
CSE142
Interfaces

CSE142 Wi02 P-1

2/19/2002 (c) University of Washington, 2001-2 P-1

CSE 142

Interfaces

2/19/2002 (c) University of Washington, 2001-2 P-2

Overview

• Defining new types of things – interfaces
• Goal: Learn what it means to implement a specification

given in an interface
• Details of defining new interfaces covered in CSE143

• Reading
• Niño & Hosch, sec. 15.1.2

(somewhat technical and beyond what we need, but useful reference)

2/19/2002 (c) University of Washington, 2001-2 P-3

Goal: Animations

• We'd like to be able to build animations: graphical
scenes that move on their own.

• What tools do we need to construct animations?
• Graphical shapes and windows: GWindow, Rectangle, House,

etc.
• Lists of active shapes: ArrayList
• A repeating loop to tell each active shape in the list to do its

action: while, Iterator

• Let's try it!

2/19/2002 (c) University of Washington, 2001-2 P-4

The Core
• A class that runs the animation:

public class Stage { …

• An ArrayList of active objects:
private ArrayList actors;

• A loop, iterating over each element in the list, telling each actor to
perform one step of its action:

public void animateOneRound() {
Iterator iter = actors.iterator();
while (iter.hasNext()) {

Object actor = iter.next();
actor.doAction(); // tell this actor to perform one step

}
}

• But this doesn't work! (Why not?)

2/19/2002 (c) University of Washington, 2001-2 P-5

The Problem
• We want to be able to send a message doAction to each

actor.
• But Object doesn't understand doAction.
• We need to cast the actor to the right type.
• But what is that type?

• Different animations will have different kinds of actors, e.g.,
Asteroid vs. JigglingHouse.

• Some animations can have more than one kind of actor, e.g.,
JigglingHouse and RisingSun.

• How can we accommodate lots of different kinds of
actors? Without rewriting Stage for each animation?

2/19/2002 (c) University of Washington, 2001-2 P-6

The Solution: Interfaces
• Can define an interface for actors, and then declare that each

different kind of actor implements this interface.
• An interface is like a class, but no instance variables, no

constructors, and no method bodies.
public interface Actor {

/** Every Actor can perform some action. */
public void doAction(Stage stage);
/** Every Actor can add itself to and remove itself from a GWindow. */
public void addTo(GWindow w);
public void removeFromWindow();

}

• Interfaces are regular types: we can declare variables of an
interface type, and we can cast to an interface type.

• We cannot instantiate an interface type, though.

CSE142
Interfaces

CSE142 Wi02 P-2

2/19/2002 (c) University of Washington, 2001-2 P-7

The Core, Revisited
• Now we can rewrite the core using the Actor interface:

public void animateOneRound() {
Iterator iter = actors.iterator();
while (iter.hasNext()) {

Actor actor = (Actor) iter.next();
actor.doAction(); // tell this actor to perform one step

}
}

• We can write other Stage methods using actors.
public void addActor(Actor actor) {

this.actors.add(actor); // add the actor to the actors list
actor.addTo(this.window); // tell the actor to display itself on the screen

}

2/19/2002 (c) University of Washington, 2001-2 P-8

Implementing Interfaces
• To create instances of an interface, the interface must be

implemented by one or more classes.
• Each class implementing an interface must include

methods with bodies for all the methods declared in the
interface. The class can have additional methods, too.

public class Asteroid implements Actor {
… // instance variables, constructors, etc.
public void doAction(Stage stage) {

… /* the code to move according to gravity */ }
public void addTo(GWindow w) { … /* the code */ }
public void removeFromWindow() { … /* the code */ }
… // more methods

}

2/19/2002 (c) University of Washington, 2001-2 P-9

Objects of Interface Type

• Because Asteroid implements Actor, we can create
instances of the Asteroid class, and then use them
wherever an object of type Actor is required
• An Asteroid is-an Actor.

Stage asteroidField = new Stage(…);

Asteroid aNewAsteroid = new Asteroid(…);

// add the new asteroid to the stage:
asteroidField.addActor(aNewAsteroid);

(recall declaration of addActor: void addActor(Actor actor) {…})

2/19/2002 (c) University of Washington, 2001-2 P-10

Another Implementation of Actor
public class JigglingHouse implements Actor {

private House house; // the House shape

private Random random; // a random number generator

public JigglingHouse(House h) {

this.house = h; this.random = new Random(); }
public void addTo(GWindow w) { this.house.addTo(w); }

public void removeFromWindow() { this.house.removeFromWindow(); }

public void doAction(Stage stage) {

int deltaX = this.random.nextInt(21) - 10; // a number between -10..+10

int deltaY = this.random.nextInt(21) - 10;

this.house.moveBy(deltaX, deltaY);
}

}

2/19/2002 (c) University of Washington, 2001-2 P-11

Another Interface: Shape
• To let GWindow display lots of different kinds of shapes, we built

an interface Shape.
public interface Shape {

…
// every shape must know how to paint itself onto a Java canvas object
public void paint(java.awt.Graphics canvas);

}

• A GWindow keeps an ArrayList of Shape objects, and sends each
one the paint message when the GWindow needs to be (re)drawn.

• Done behind the scenes – you don’t have to deal with this

• Rectangle, Oval, Line, etc. all implement the Shape interface.

2/19/2002 (c) University of Washington, 2001-2 P-12

Another Interface: Iterator

• Iterator is actually an interface, not a class.
• ArrayList provides a class that implements the Iterator

interface, but that knows about the insides of ArrayList.
• Other collections in Java provide their own classes that

implement the Iterator interface, but that know about
how they're implemented.

• The users of collections don't have to know anything
about how they're implemented! They only have to
know how to get an iterator and then how to send
hasNext() and next() messages to the iterator.

