
CSE142
More About Iteration

CSE142 Wi02 Q-1

2/25/2002 (c) University of Washington, 2001-2 Q-1

CSE 142

More About Iteration

2/25/2002 (c) University of Washington, 2001-2 Q-2

Introduction

• Review
• Basic collections - ArrayList
• Iteration over collections – iterators and while loops

• Today
• More general patterns of iteration
• For loops
• Nested loops

• Reading
• Dugan notes: ch. 15, 17

2/25/2002 (c) University of Washington, 2001-2 Q-3

Iterating using Iterators

• To process all the elements of an ArrayList (or of any of
the other kinds of collections in Java), we can use
iterators.

• An ArrayList iterator allow us to
• go through all the elements,
• in order from the first to the last.

• What if we don't want to go through all the elements?
• What if we want to go through them in a different order?

2/25/2002 (c) University of Washington, 2001-2 Q-4

Iterating using Indices

• We can iterate through ArrayLists using integer indices
and get() messages, instead of Iterators.

• Here's a simple example using indices, which mimics
what Iterators can do:

ArrayList names = …;

int index = 0;

while (index < names.size()) {

String name = (String) names.get(index);

System.out.println(name);
index = index + 1;

}

ArrayList names = …;

Iterator iter = names.iterator();

while (iter.hasNext()) {

String name = (String) iter.next();

System.out.println(name);

}

2/25/2002 (c) University of Washington, 2001-2 Q-5

Iterating Backwards

• Here's an example that iterators can't do: iterating in
reverse order, last to first:

ArrayList names = …;

int index = names.size() - 1; // start at the last position in the list

while (index >= 0) { // keep going while we're not before the first element

String name = (String) names.get(index);

System.out.println(name);

index = index - 1; // visit the previous element next
}

2/25/2002 (c) University of Washington, 2001-2 Q-6

Visiting Only Even Elements

• Here's another example that iterators can't do: visiting
only the even elements:

ArrayList names = …;

int index = 0; // start at the first even position in the list

while (index < names.size()) { // keep going while we're not after the end

String name = (String) names.get(index);

System.out.println(name);

index = index + 2; // visit the next even element next
}

CSE142
More About Iteration

CSE142 Wi02 Q-2

2/25/2002 (c) University of Washington, 2001-2 Q-7

Pattern of Iteration using Indices

• Pattern:
int index = <initial position to visit>;
while (<some test of index >= 0 and/or < list.size()>) {

Type element = (Type) list.get(index);

<do something with element>

index = <the next index to visit>;

}

2/25/2002 (c) University of Washington, 2001-2 Q-8

For Loops
• This iteration pattern is so common that Java provides a special

statement for this: the for loop statement
for (<initialize statement>; <test expression>; <step statement>) {

<body statements>
}

• This is equivalent to a certain pattern of while loop:
<initialize statement>;
while (<test expression>) {

<body statements>
<step statement>;

}

• In this case, for loops are clearer (to humans) than while loops,
because the iteration pattern is separated from the body
statements.

• Don't use a while loop if a for loop captures the pattern better!

2/25/2002 (c) University of Washington, 2001-2 Q-9

Examples using For Loops
// print all the elements, first to last:
for (int index = 0; index < names.size(); index = index + 1) {

String name = (String) names.get(index);
System.out.println(name);

}
// print all the elements, last to first:
for (int index = names.size() - 1; index >= 0; index = index - 1) {

String name = (String) names.get(index);
System.out.println(name);

}
// print the even elements, first to last:
for (int index = 0; index < names.size(); index = index + 2) {

String name = (String) names.get(index);
System.out.println(name);

}

2/25/2002 (c) University of Washington, 2001-2 Q-10

Iterators vs Direct Access

• Given the choice, are we better off with an iterator or
using a for loop that accesses the items by index?

• Iterator is more general: it works on other collections that don’t
have a notion of item 0, item 1, item 2, ….

• Iterator is less error-prone: don't have to worry about getting
the continue test right, or about forgetting to do the index step
statement.

• For loops support more general patterns of iteration.
• For loops can be used where there isn't a collection involved.

2/25/2002 (c) University of Washington, 2001-2 Q-11

Counting using For Loops
• Sometimes we want to do something a certain number of times.
• Example: print a row of 50 asterisks:

for (int i = 0; i < 50; i = i + 1) {
System.out.print("*");

}
System.out.println(); // end the line

• Example: execute some number of rounds of animation:
public class Stage {

…
public void animate(int numRounds) {

for (int i = 0; i < numRounds; i = i + 1) {
this.animateOneRound(); // do this numRounds times

}
}

}

2/25/2002 (c) University of Washington, 2001-2 Q-12

Increment and Decrement
• It is quite common to increase or decrease the value of a

name by 1.
k = k + 1;
n = n – 1;
for (int i = 0; i < count; i = i + 1) { … }

• Java provides operators to do this more concisely:
k ++; // means k = k + 1;
n --; // means n = n - 1;
for (int i = 0; i < count; i ++) { … }

• +=, -=, *=, etc. operators, too.
result *= scaleFactor; // means result = result * scaleFactor;

• Use them if you want; entirely optional for this course.

CSE142
More About Iteration

CSE142 Wi02 Q-3

2/25/2002 (c) University of Washington, 2001-2 Q-13

Nested Loops

• Print 3 rows of 5 *’s each

• Solution
for (row = 0; row < 3; row++) {

// print a row of 5 *s
?

}

2/25/2002 (c) University of Washington, 2001-2 Q-14

• Answer – need second loop nested in the first
• Solution

for (row = 0; row < 3; row++) {
// print a row of 5 *s
for (col = 0; col < 5; col++) {

System.out.print(“*”);
}
System.out.println();

}

• Does it work? Trace it!!
• Can nest loops (and ifs) in loops (and ifs) as much as

desired.

Nested Loops

body of outer loop contains another loop

2/25/2002 (c) University of Washington, 2001-2 Q-15

Exercise

• Print a multiplication table with 4 rows and 4 columns
1 2 3 4
2 4 6 8

3 6 9 12

4 8 12 16

• Solution:

