
2D Arrays 2/27/2002

CSE142 Wi02 S-1

2/27/2002 (c) 2001-2, University of Washington S-1

CSE 142

2-D Arrays

2/27/2002 (c) 2001-2, University of Washington S-2

Introduction

• Review:
• Simple, one-dimensional arrays

• Today:
• Two-dimensional arrays

• Reading
• Dugan notes: ch. 20

2/27/2002 (c) 2001-2, University of Washington S-3

Review – Arrays

• Simple, ordered collections.
• Elements of a particular array all have the same type.
• Size fixed when array created.

Rectangle[] rects = new Rectangle[42+17];

• Indexed access to elements.
rects[3] = new Rectangle();

rects[3].moveBy(10, 20);

2/27/2002 (c) 2001-2, University of Washington S-4

2-D Arrays
• Suppose we want to represent a picture.

(Disclaimer: simple-minded representation for lecture purposes.)

• Want a rectangular, 2-dimensional matrix of colored Rectangles,
each of size 1x1.

• We can create an array with 2 dimensions to hold the picture.
• Type pattern: <elem type>[][]

• New expr pattern: new <elem type>[<dim 1 size>][<dim 2 size>]

• Access expr/assignment pattern: <array>[<dim 1 index>][<dim 2 index>]

Rectangle[][] picture = new Rectangle [40] [60];
picture[0][0] = new Rectangle(0,0,1,1, Color.blue, true);

2/27/2002 (c) 2001-2, University of Washington S-5

2-D Array = Array of Arrays
• A 2-D array is really just an array of arrays.

(In languages like FORTRAN and C/C++, this isn't true.)

• It's possible to manipulate each row array separately.
• (Draw the picture!)

Rectangle[][] picture = new Rectangle[40][60];
picture[0][0] = new Rectangle(0,0,1,1, Color.blue, true);
…
Rectangle[] firstRow = picture[0];
firstRow[0] = new Rectangle(0,0,1,1, Color.red, true);

• What do the following evaluate to?
picture.length
firstRow.length
picture[0][0].length

2/27/2002 (c) 2001-2, University of Washington S-6

Collections of Collections

• Arrays of arrays are just a special case of allowing
collections to hold any kind of object, including another
collection.

• If more convenient, we could have used ArrayLists
whose elements were ArrayLists to represent the
picture.

2D Arrays 2/27/2002

CSE142 Wi02 S-2

2/27/2002 (c) 2001-2, University of Washington S-7

2-D Array Traversal

• Typical traversal is to go through the rows and, for each
row, go through the columns. Called "row-major order".

public void initialize(Rectangle[][] picture, Color initialColor) {

for (int row = 0; row < picture.length; row++) {

for (int col = 0; col < picture[row].length; col++) {

picture[row][col] = new Rectangle(col,row,1,1,initialColor,true);

}

}

}

• Notice how the upper bounds of the two loops are computed.

2/27/2002 (c) 2001-2, University of Washington S-8

Exercise: Shift Picture to Left
// Copy colors one cell to the left, setting last column to white
public void shiftLeft(Rectangle[][] picture) {

for (int row = 0; row < ; row++) {

for (int col = 0; col < ; col++) {

Rectangle thisPixel =

Rectangle pixelToRight =

thisPixel.setColor(pixelToRight.getColor());
}

}
}

2/27/2002 (c) 2001-2, University of Washington S-9

Exercise: Shift Picture Down
// Copy colors one cell downwards, setting first row to white

public void shiftDown(Rectangle[][] picture) {

}

• Hint: row-major order might not be the right approach.

