
Unordered Collections 3/12/2002

CSE142 Wi02 1T

3/12/2002 (c) 2001-2, University of Washington U-1

CSE 142

Unordered Collections

3/12/2002 (c) 2001-2, University of Washington U-2

Introduction

• Quick Review:
• Ordered vs. Unordered collections
• an Ordered Collection: ArrayList

• Today:
• an Unordered Collection: HashSet
• an Unordered Collection: HashMap

• Readings
• Dugan notes: end of ch. 14; middle of ch. 17

3/12/2002 (c) 2001-2, University of Washington U-3

Ordered vs. Unordered Collections
• Some collections have a natural order of their elements:

• the steps in a recipe
• the list of daily weather observations
• the list of shapes to be drawn (with later shapes layered over

earlier shapes)

• ArrayLists are good for these collections.
• Some collections don't have any obvious natural order:

• the ingredients in a recipe
• the stars in the sky
• the CDs at Tower Records

• ArrayLists are not ideal for these collections.

3/12/2002 (c) 2001-2, University of Washington U-4

HashSet
• A HashSet can store a collection of elements without any order.
• A partial interface:

public class HashSet {
// Add the argument object to the set, if it wasn't there already
public boolean add(Object obj);
// Return whether the argument object is an element of the set
public boolean contains(Object obj);
// Remove the argument object from the set, if it was present
public boolean remove(Object obj);
// Return the number of elements in the set
public int size();
// Return an iterator that will go through all the set's elements, in some order
public Iterator iterator();
…

}

3/12/2002 (c) 2001-2, University of Washington U-5

Using HashSets
HashSet set = new HashSet();

set.add("Parsley"); set.add("Sage"); set.add("Oregano");
set.add("Rosemary"); set.add("Thyme"); // draw the picture!

int count = set.size(); // what is count?

set.remove("Oregano"); // what is the picture now?

if (set.contains("Arsenic")) {
System.out.println("Beware!");

}

Iterator iter = set.iterator();

while (iter.hasNext()) {

String ingredient = (String) iter.next();
System.out.println(ingredient);

} // what is printed?

3/12/2002 (c) 2001-2, University of Washington U-6

Keyed Collections
• Some collections have a way to look up each element, using the

element's key.
• For example:

• Each CD in a music collection could be looked up by title.
• Each student in the class could be looked up by name, or by student ID.
• Each entry in the dictionary can be looked up by the word the entry defines.

• A collection that links keys to data is called a map, or sometimes
a table or a dictionary.

• Each key must be unique! Cannot have two different entries have the same
key.

• Not always true in real life, so we often have to invent unique keys for
things. (Can you think of any examples?)

Unordered Collections 3/12/2002

CSE142 Wi02 2T

3/12/2002 (c) 2001-2, University of Washington U-7

HashMap
• A HashMap can store a keyed collection of values.

public class HashMap {
// Make key map to value in the map
// (either by adding a new mapping or by changing what key maps to)
public Object put(Object key, Object value);
// Return the value that key maps to, or null if it isn't in the map
public Object get(Object key);
// Return whether the argument object is a key of the map
public boolean containsKey(Object key);
// Return whether the argument object is a value in the map
public boolean containsValue(Object value);
// Remove key and the value it maps to from the map, if it was present
public boolean remove(Object key);
…

}

3/12/2002 (c) 2001-2, University of Washington U-8

Building a HashMap

• Adding mappings:
HashMap addresses = new HashMap();
addresses.put("Willa", "123 Boat St.");

addresses.put("Bill", "45 North Rd.");

addresses.put("Susan", "653 45th Ave.");

• The picture:

"45 North Rd."

"123 Boat St."

"653 45th Ave."

"Willa"

"Susan"

"Bill"

addresses

3/12/2002 (c) 2001-2, University of Washington U-9

Examining a HashMap
HashMap addresses = …;

…

String addr1 = (String) addresses.get("Bill"); // what is addr1?

String addr2 = (String) addresses.get("Bobbie"); // what is addr2?

if (addresses.containsKey("Susan")) {
System.out.println((String) addresses.get("Susan"));

}

addresses.remove("Willa"); // what does the picture look like now?

// Bill moves in with Susan:
addresses.put("Bill", addresses.get("Susan")); // what is the picture now?

3/12/2002 (c) 2001-2, University of Washington U-10

Null
• In Java, there is a special value, null, which is used to

represent "nothing" or "undefined."
• Instance variables are initialized by default to null.

• Many collection methods return null to mean that no
such object exists.

HashMap notesToMyself = new HashMap ();
…
String task = (String) notesToMyself.get("Most Important To-Do Item");
if (task == null) {

System.out.println("Nothing to do; go play!");
} else {

System.out.println("Get busy on " + task);
}

3/12/2002 (c) 2001-2, University of Washington U-11

More HashMap Methods
public class HashMap {

…

// Return the number of key/value pairs in the map
public int size();

// Return a Set (the interface of HashSet) of the keys of the map
public Set keySet();

// Return a Collection (the interface of all collections) of the values of the map
public Collection values();

…

}

3/12/2002 (c) 2001-2, University of Washington U-12

Iterating through a HashMap

• To iterate through a map, get either the keys or the
values, and then iterate through them.

HashMap musicCollection = …;

…

Set titles = musicCollection.keySet(); // get the set of keys

Iterator iter = titles.iterator(); // get an iterator on the keys

while (iter.hasNext()) {

String title = (String) iter.next(); // get the next key

CD disk = (CD) musicCollection.get(title); // lookup the key

System.out.println("Now playing " + title);
disk.play();

}

