
1

1

Primitive data, expressions,

and variables

Readings: 2.1 – 2.2

2

How the computer sees the world

� Internally, the computer stores everything in
terms of 1’s and 0’s
� Example:

h � 0110100

"hi" � 01101000110101

104 � 0110100

� How can the computer tell the difference
between an h and 104?

3

Data types

� type: A category of data values.
� Example: integer, real number, string

� Data types are divided into two classes:
� primitive types: Java's built-in simple data types

for numbers, text characters, and logic.
� object types: Coming soon!

4

Primitive types

� Java has eight primitive types. We will cover two for now.

Name Description Examples
int integers 42, -3 , 0, 926394

double real numbers 3.4 , -2.53 , 91.4e3

� Numbers with a decimal point are treated as real numbers.

� Question: Isn’t every integer a real number? Why bother?

5

Integer or real number?

� Which category is more appropriate?

� credit: Kate Deibel, http://www.cs.washington.edu/homes/deibel/CATs/

real number (double)integer (int)

1. Temperature in degrees Celsius

2. The population of lemmings

3. Your grade point average

4. A person's age in years

5. A person's weight in pounds

6. A person's height in meters

7. Number of miles traveled

8. Number of dry days in the past month

9. Your locker number

10. Number of seconds left in a game

11. The sum of a group of integers

12. The average of a group of integers

6

Manipulating data via expressions

� expression: A data value or a set of operations that
produces a value.
� Examples:

1 + 4 * 3

3

"CSE142"

(1 + 2) % 3 * 4

2

7

The operators

� Arithmetic operators we will use:
� + addition
� - subtraction or negation
� * multiplication
� / division
� % modulus, a.k.a. remainder

8

Evaluating expressions

� When Java executes a program and encounters an
expression, the expression is evaluated (i.e.,
computed).
� Example: 3 * 4 evaluates to 12

� System.out.println(3 * 4) prints 12
(after evaluating 3 * 4)
� How could we print the text 3 * 4 on the console?

9

Evaluating expressions: Integer division

� When dividing integers, the result is also an integer.
� Example: 14 / 4 evaluates to 3, not 3.5 (truncate the number)

3 52
4) 14 27) 1425

12 135
2 75

54
21

� Examples:
� 1425 / 27 is 52

� 35 / 5 is 7
� 84 / 10 is 8
� 156 / 100 is 1
� 24 / 0 is illegal

10

Evaluating expressions: The modulus (%)

� The modulus computes the remainder from a division of integers.
� Example: 14 % 4 is 2

1425 % 27 is 21

3 52
4) 14 27) 1425

12 135
2 75

54
21

� What are the results of the following expressions?
� 45 % 6
� 2 % 2
� 8 % 20
� 11 % 0

11

Applying the modulus

� What expression obtains…
� the last digit (unit’s place) of a number?

� Example: From 230857 , obtain the 7.

� the last 4 digits of a Social Security Number?
� Example: From 658236489 , obtain 6489 .

� the second-to-last digit (ten’s place) of a number?
� Example: From 7342 , obtain the 4.

12

Applying the modulus

� How can we use the %operator to determine whether
a number is odd?

� How about if a number is divisible by, say, 27?

3

13

Precedence: Remember PEMDAS?

� precedence: Order in which operations are computed in an
expression.

� Operators on the same level are evaluated from left to right.
Example: 1 - 2 + 3 is 2 (not -4)

� Spacing does not affect order of evaluation.
Example: 1+3 * 4-2 is 11

+ -Addition, Subtraction

* / %Multiplication, Division, Mod

()Parentheses

14

Precedence examples

� 1 * 2 + 3 * 5 / 4

� _/
|
2 + 3 * 5 / 4

� _/
|

2 + 15 / 4

� ___/
|

2 + 3

� ________/
|
5

1 + 2 / 3 * 5 - 4

_/
|

1 + 0 * 5 - 4

___/
|

1 + 0 - 4

______/
|
1 - 4

_________/
|

-3

15

Precedence exercise

� Evaluate the following expressions:
� 9 / 5

� 695 % 20

� 7 + 6 * 5

� 7 * 6 + 5

� 248 % 100 / 5

� 6 * 3 - 9 / 4

� (5 - 7) * 4

� 6 + (18 % (17 - 12))

� Which parentheses are unnecessary?

16

Real numbers (double)

� The operators also work with real numbers.
� The division operator produces an exact answer.

� Examples:
15.0 / 2.0 is 7.5

15.3 + 2.5 is 17.8

1.23 + 15.0 * 2.0 is 31.23

� The same precedence rules apply.

17

Real numbers example

� 2.0 * 2.4 + 2.25 * 4.0 / 2.0

� ___/
|

4.8 + 2.25 * 4.0 / 2.0

� ___/
|

4.8 + 9.0 / 2.0

� _____/
|

4.8 + 4.5

� ____________/
|

9.3

18

Precision in real numbers

� The computer internally represents real
numbers in an imprecise way.

� Example:
System.out.println(0.1 + 0.2);

� The output is 0.30000000000000004 !

4

19

Mixing integers and real numbers

� When an operator is
used on an integer and
a real number, the
result is a real number.
� Examples:

4.2 * 3 is 12.6
1 / 2.0 is 0.5

� The conversion occurs
on a per-operator basis.
It affects only its two
operands.

7 / 3 * 1.2 + 3 / 2
� _/

|
2 * 1.2 + 3 / 2

� ___/
|

2.4 + 3 / 2
� _/

|
2.4 + 1

� ________/
|

3.4

� Notice how 3 / 2 is still
1 above, not 1.5 .

20

Mixed types example

� 2.0 + 10 / 3 * 2.5 - 6 / 4
� ___/

|
2.0 + 3 * 2.5 - 6 / 4

� _____/
|

2.0 + 7.5 - 6 / 4
� _/

|
2.0 + 7.5 - 1

� _________/
|

9.5 - 1
� ______________/

|
8.5

21

Type casting

� type cast: A conversion from one type to another.
Common uses:
� To promote an int into a double to achieve exact division.

� To truncate a double from a real number to an integer.

� General syntax:
(<type>) <expression>

� Examples:
(double)19 / 5 // 3.8

(int)3.8 // 3

22

Type casting

� Type casting has high precedence and only casts the item
immediately next to it.

(double)1 + 1 / 2 // 1.0

(double)1 / 2; // 0.5

� You can use parentheses to force evaluation order.
(double)(7 + 3 + 4) / 3

� A conversion to double can be achieved in other ways.
1.0 * (7 + 3 + 4) / 3

23

Concatenation: Operating on strings

� string concatenation: Using the + operator between a string
and another value to make a longer string.

� Examples:
"hello" + 42 is "hello42"
1 + "abc" + 2 is "1abc2"
"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"
"abc" + 9 * 3 is "abc27" (what happened here?)
"1" + 1 is "11"
4 - 1 + "abc" is "3abc"

"abc" + 4 - 1 causes a compiler error. Why?

24

String expressions

� Let’s print more complicated messages with computed values.

System.out.println("Your grade was " + ((95.1 + 71.9 +

82.6) / 3.0));

System.out.println("There are " + (11 + 17 + 4 + 19 +

14) + " students in the course.");

5

25

What was the answer again?

� Using the data from the last slide, what if we wanted to print
the following?
Your grade was 83.2

Summary:

Course grade: 83.2

� Answer?
System.out.println("Your grade was " + ((95.1 + 71.9 +
82.6) / 3.0));

System.out.println("Summary:");

System.out.println("Course grade: " + ((95.1 + 71.9 +

82.6) / 3.0));

26

What was the answer again?

� Evaluating expressions are
somewhat like using the
computer as a calculator.
� A good calculator has "memory"

keys to store and retrieve a
computed value.

27

Variables

� variable: A piece of your computer's memory that is given
a name and type and can store a value.
� Usage:

� compute an expression's result
� store that result into a variable
� use that variable later in the program

� Variables are a bit like preset stations on a car stereo:

28

Declaring variables

� To use a variable, first it must be declared.

� Variable declaration syntax:
<type> <name>;

� Convention: Variable identifiers follow the same
rules as method names.

� Examples:
int x;
double myGPA;
int varName;

29

� Declaring a variable sets aside a piece of
memory in which you can store a value.

int x;
int y;

� Inside the computer:

x: ? y: ?

(The memory still has no value yet.)

Declaring variables

30

Setting variables

� assignment statement: A Java statement that stores a value
into a variable.
� Variables must be declared before they can be assigned a value.

� Assignment statement syntax:
<variable> = <expression>;

� Examples:
x = 2 * 4; x: 8 myGPA: 3.25

myGPA = 3.25;

6

31

Setting variables

� A variable can be assigned a value more than once.

� Example:

int x;
x = 3;
System.out.println(x); // 3

x = 4 + 7;
System.out.println(x); // 11

32

Using variables

� Once a variable has been assigned a value, it can be used in any
expression.

int x;
x = 2 * 4;
System.out.println(x * 5 - 1);

� The above has output equivalent to:
System.out.println(8 * 5 - 1);

� What happens when a variable is used on both sides of an
assignment statement?

int x;
x = 3;
x = x + 2; // what happens?

33

Errors in coding

� ERROR: Declaring two variables with the same
name
� Example:

int x;
int x; // ERROR: x already exists

� ERROR: Reading a variable’s value before it has
been assigned
� Example:

int x;

System.out.println(x); // ERROR: x has no value

34

Assignment vs. algebra

� The assignment statement is not an algebraic equation!

� <variable> = <expression>; means:
� "store the value of <expression> into <variable>"

� Some people read x = 3 * 4; as
� "x gets the value of 3 * 4 "

� ERROR: 3 = 1 + 2; is an illegal statement, because 3
is not a variable.

35

Assignment and types

� A variable can only store a value of its own type.
� Example:

int x;
x = 2.5; // ERROR: x can only store int

� An int value can be stored in a double variable. Why?

� The value is converted into the equivalent real number.
� Example:

double myGPA; myGPA: 2.0

myGPA = 2;

36

Assignment exercise

� What is the output of the following Java
code?
int x;

x = 3;

int y;

y = x;

x = 5;

System.out.println(x);

System.out.println(y);

7

37

Assignment exercise

� What is the output of the following Java code?
int number;
number = 2 + 3 * 4;
System.out.println(number - 1);
number = 16 % 6;
System.out.println(2 * number);

� What is the output of the following Java code?
double average;
average = (11 + 8) / 2;
System.out.println(average);
average = (5 + average * 2) / 2;
System.out.println(average);

38

Shortcut: Declaring and initializing

� A variable can be declared and assigned an
initial value in the same statement.

� Declaration/initialization statement syntax:
<type> <name> = <expression>;

� Examples:

double myGPA = 3.95;

int x = (11 % 3) + 12;

39

Shortcut: Declaring many variables at once

� It is legal to declare multiple variables on one line:
<type> <name>, <name>, ..., <name>;

� Examples:
int a, b, c;
double x, y;

� It is also legal to declare/initialize several at once:
<type> <name> = <expression> , ..., <name> = <expression>;

� Examples:
int a = 2, b = 3, c = -4;
double grade = 3.5, delta = 0.1;

� NB: The variables must be of the same type.

40

Shortcut: Modify and assign

� Java has several shortcut operators that allow you to quickly modify
a variable's value.

Shorthand Equivalent longer version
<variable> += <exp>; <variable> = <variable> + (<exp>);
<variable> -= <exp>; <variable> = <variable> - (<exp>);
<variable> *= <exp>; <variable> = <variable> * (<exp>);
<variable> /= <exp>; <variable> = <variable> / (<exp>);
<variable> %= <exp>; <variable> = <variable> % (<exp>);

� Examples:
� x += 3 - 4; // x = x + (3 - 4);

� gpa -= 0.5; // gpa = gpa – (0.5);

� number *= 2; // number = number * (2);

41

Shortcut: Increment and decrement

� Incrementing and decrementing 1 is used often enough that they have a
special shortcut operator!

Shorthand Equivalent longer version
<variable>++; <variable> = <variable> + 1;
<variable>--; <variable> = <variable> - 1;

� Examples:
int x = 2;
x++; // x = x + 1;

// x now stores 3

double gpa = 2.5;
gpa++; // gpa = gpa + 1;

// gpa now stores 3.5

42

Putting it all together: Exercise

� Write a program that stores the following data:
� Section AA has 17 students.
� Section AB has 8 students.
� Section AC has 11 students.
� Section AD has 23 students.
� Section AE has 24 students.
� Section AF has 7 students.
� The average number of students per section.

� Have your program print the following:
There are 24 students in Section AE.

There are an average of 15 students per section.

8

43

The for loop and scope

Readings: 2.3 – 2.4

44

Repetition

� How can we eliminate this redundancy?

System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");
System.out.println("I will not throw the principal’s toupee down the toilet");

45

Looping via the for loop

� for loop: A block of Java code that executes a group of statements
repeatedly until a given test fails.

� General syntax:
for (<initialization>; <test>; <update>) {

<statement>;

<statement>;
...

<statement>;
}

� Example:
for (int i = 1; i <= 30; i++) {

System.out.println("I will not throw...");
}

46

The for loop is NOT a method

� The for loop is a control structure—a syntactic
structure that controls the execution of other
statements.

� Example:
� “Shampoo hair. Rinse. Repeat.”

47

for loop over range of int s

� We'll write for loops over integers in a given range.
� The <initialization> declares a loop counter variable that is used in the test,

update, and body of the loop.

for (int <name> = 1; <name> <= <value>; <name>++) {

� Example:
for (int i = 1; i <= 4; i++) {

System.out.println(i + " squared is " + (i * i));
}

"For each int i from 1 through 4, ...“

Output:
1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16

48

for loop flow diagram
for (<init>; <test>; <update>) {

<statement>;
<statement>;
...
<statement>;

}

9

49

Loop walkthrough

� Code:
for (int i = 1; i <= 3; i++) {

System.out.println(i + " squared is " + (i * i));
}

Output:
1 squared is 1
2 squared is 4
3 squared is 9

i:

50

Loop example

� Code:
System.out.println("+----+");
for (int i = 1; i <= 3; i++) {

System.out.println("\\ /");
System.out.println("/ \\");

}
System.out.println("+----+");

Output:
+----+
\ /
/ \
\ /
/ \
\ /
/ \
+----+

51

Varying the for loop

� The initial and final values for the loop counter variable can be arbitrary
expressions:

� Example:
for (int i = -3; i <= 2; i++) {

System.out.println(i);
}

Output:
-3
-2
-1
0
1
2

� Example:
for (int i = 1 + 3 * 4; i <= 5248 % 100; i++) {

System.out.println(i + " squared is " + (i * i));
}

52

Varying the for loop

� The update can be a -- (or any other operator).
� Caution: This requires changing the test from <= to >= .

System.out.print("T-minus");
for (int i = 3; i >= 1; i --) {

System.out.println(i);
}
System.out.println("Blastoff!");

Output:
T-minus
3
2
1
Blastoff!

53

Errors in coding

� When controlling a single statement, the {} braces are optional.

for (int i = 1; i <= 6; i++)
System.out.println(i + " squared is " + (i * i));

� This can lead to errors if a line is not properly indented.

for (int i = 1; i <= 3; i++)
System.out.println("This is printed 3 times");
System.out.println("So is this... or is it?");

Output:
This is printed 3 times
This is printed 3 times
This is printed 3 times
So is this... or is it?

� Moral: Always use curly braces and always use proper indentation.

54

Errors in coding

� ERROR: Loops that never execute.

for (int i = 10; i < 5; i++) {

System.out.println("How many times do I print?");

}

� ERROR: Loop tests that never fail.
� A loop that never terminates is called an infinite loop.

for (int i = 10; i >= 1; i++) {

System.out.println("Runaway Java program!!!");

}

10

55

for loop exercises

� Write a loop that produces the following output.
On day #1 of Christmas, my true love sent to me
On day #2 of Christmas, my true love sent to me
On day #3 of Christmas, my true love sent to me
On day #4 of Christmas, my true love sent to me
On day #5 of Christmas, my true love sent to me
...
On day #12 of Christmas, my true love sent to me

56

Scope

� scope: The portion of a program where a given variable exists.
� A variable's scope is from its declaration to the end of the { } braces in

which it was declared.
� Special case: If a variable is declared in the <initialization> part of a

for loop, its scope is the for loop.

public static void example() {
int x = 3;
for (int i = 1; i <= 10; i++) {

System.out.println(x);
}
// i no longer exists here

} // x ceases to exist here

� Why not just have the scope of a variable be the whole program?

x 's scope
i 's scope

57

Errors in coding

� ERROR: Using a variable outside of its scope.

public static void main(String[] args) {
int z = 0;
example();
System.out.println(x); // illegal: x is out of sco pe

for (int i = 1; i <= 10; i++) {
int y = 5;
System.out.println(y);

}
System.out.println(y); // illegal: y is out of sco pe

}

public static void example() {
int x = 3;
System.out.println(x);
System.out.println(z); // illegal: z is out of sco pe

}

58

� ERROR: Declaring variables with the same name with overlapping scope.

public static void main(String[] args) {
int x = 2;

for (int i = 1; i <= 5; i++) {
int y = 5;
System.out.println(y);

}
for (int i = 3; i <= 5; i++) {

int y = 2;
int x = 4; // illegal
System.out.println(y);

}
}

public static void anotherMethod() {
int i = 6;
int x = 2;
int y = 3;
System.out.println(i + ", " + x + ", " + y);

}

Errors in coding

59

Mapping loops to numbers

� Suppose that we have the following loop:
for (int count = 1; count <= 5; count++) {

...
}

� What statement could we write in the body of the loop that would
make the loop print the following output?
3 6 9 12 15

60

But first… How to print on the same line

� System.out.print prints the given output without moving to
the next line.

System.out.print("T-minus ");

for (int i = 3; i >= 1; i--) {

System.out.print(i + " ");

}

System.out.println("Blastoff!");

Output:
T-minus 3 2 1 Blastoff!

11

61

Mapping loops to numbers

� Suppose that we have the following loop:
for (int count = 1; count <= 5; count++) {

...
}

� What statement could we write in the body of the loop that would
make the loop print the following output?
3 6 9 12 15

� Answer:
for (int count = 1; count <= 5; count++) {

System.out.print(3 * count + " ");
}

62

Mapping loops to numbers

� Now consider another loop of the same style:
for (int count = 1; count <= 5; count++) {

...
}

� What statement could we write in the body of the loop that would
make the loop print the following output?
4 7 10 13 16

� Answer:
for (int count = 1; count <= 5; count++) {

System.out.print(3 * count + 1 + " ");
}

63

Loop number tables

� What statement could we write in the body of the loop that would
make the loop print the following output?
2 7 12 17 22

� To find the pattern, it can help to make a table.
� Each time count goes up by 1, the number should go up by 5.
� But count * 5 is too big by 3, so we must subtract 3.

1720174

22

12

7

2

number to print

25

15

10

5

count * 5

225

123

72

21

count * 5 - 3count

64

Another perspective: Slope-intercept

-10

-5

0

5

10

15

20

25

-2 0 2 4 6 174

22

12

7

2

number to print (y)

5

3

2

1

count (x)

65

Another perspective: Slope-intercept

� Caution: This is algebra, not assignment!
� Recall: slope-intercept form (y = mx + b)
� Slope is defined as “rise over run” (i.e. rise / run). Since the “run” is

always 1 (we increment along x by 1), we just need to look at the “rise”.
The rise is the difference between the y values. Thus, the slope (m) is
the difference between y values; in this case, it is +5.

� To compute the y-intercept (b), plug in the value of y at x = 1 and
solve for b. In this case, y = 2 .

y = m * x + b
2 = 5 * 1 + b
Then b = -3

� So the equation is
y = m * x + b
y = 5 * x – 3
y = 5 * count - 3 174

22

12

7

2

number to print (y)

5

3

2

1

count (x)

66

Another perspective: Slope-intercept

� Algebraically, if we always take the value of y at
x = 1 , then we can solve for b as follows:

y = m * x + b
y1 = m * 1 + b
y1 = m + b
b = y 1 – m

� In other words, to get the y-intercept, just subtract the
slope from the first y value (b = 2 – 5 = -3)
� This gets us the equation

y = m * x + b
y = 5 * x – 3
y = 5 * count – 3

(which is exactly the equation from the previous slides)

12

67

Loop table exercise

� What statement could we write in the body of the loop that would
make the loop print the following output?
17 13 9 5 1

� Let's create the loop table together.
� Each time count goes up 1, the number should ...
� But this multiple is off by a margin of ...

5-16

-20

-12

-8

-4

count * -4

1

9

13

17

count * -4 + 21

54

1

9

13

17

number to print

5

3

2

1

count

68

Nested for loops

� nested loop: Loops placed inside one another.
� Caution: Make sure the inner loop's counter variable has a different name!

for (int i = 1; i <= 3; i++) {
System.out.println("i = " + i);
for (int j = 1; j <= 2; j++) {

System.out.println(" j = " + j);
}

}

Output:
i = 1

j = 1
j = 2

i = 2
j = 1
j = 2

i = 3
j = 1
j = 2

69

Nested loops example

� Code:
for (int i = 1; i <= 5; i++) {

for (int j = 1; j <= 10; j++) {
System.out.print((i * j) + " ");

}
System.out.println(); // to end the line

}

Output:
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50

70

Nested loops example

� Code:
for (int i = 1; i <= 6; i++) {

for (int j = 1; j <= 10; j++) {
System.out.print("*");

}
System.out.println();

}

Output:

71

Nested loops example

� Code:
for (int i = 1; i <= 6; i++) {

for (int j = 1; j <= i; j++) {
System.out.print("*");

}
System.out.println();

}

Output:
*
**

72

Nested loops example

� Code:
for (int i = 1; i <= 6; i++) {

for (int j = 1; j <= i; j++) {
System.out.print(i);

}
System.out.println();

}

Output:
1
22
333
4444
55555
666666

13

73

Nested loops example

� Code:
for (int i = 1; i <= 5; i++) {

for (int j = 1; j <= (5 - i); j++) {
System.out.print(" ");

}
for (int k = 1; k <= i; k++) {

System.out.print(i);
}
System.out.println();

}

Output:
1

22
333

4444
55555

74

Nested loops

� What nested for loops produce the following output?

....1

...2

..3

.4
5

� Key idea:
� outer "vertical" loop for each of the lines
� inner "horizontal" loop(s) for the patterns within each line

outer loop (loops 5 times because there are 5 lines)

inner loop (repeated characters on each line)

75

Nested loops

� First, write the outer loop from 1 to the number of lines desired.

for (int line = 1; line <= 5; line++) {
...

}

� Notice that each line has the following pattern:
� some number of dots (0 dots on the last line)
� a number

....1

...2

..3

.4
5

76

Nested loops

� Make a table:

....1

...2

..3

.4
5

� Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (line * -1 + 5); j++) {
System.out.print(".");

}
System.out.println(line);

}

0

1

2

3

4
line * -1 + 5

414

0

2

3

4

of dots

5

3

2

1

value displayed

5

3

2

1

line

77

Nested Loops

� Modify the previous code to
produce this output:

....1

...2.

..3..

.4...

5....

� Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (line * -1 + 5); j++) {
System.out.print(".");

}
System.out. print(line);
for (int j = 1; j <= (line - 1); j++) {

System.out.print(".");
}
System.out.println();

}

5

4

3

2

1

value displayed

314

0

2

3

4

of dots

4

2

1

0

of dots

5

3

2

1

line

78

Errors in coding

� ERROR: Using the wrong loop counter variable.

� What is the output of the following piece of code?
for (int i = 1; i <= 10; i++) {

for (int j = 1; i <= 5; j++) {
System.out.print(j);

}
System.out.println();

}

� What is the output of the following piece of code?
for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 5; i++) {
System.out.print(j);

}
System.out.println();

}

14

79

Managing complexity

Readings: 2.4 – 2.5

80

Drawing complex figures

� Write a program that produces the following figure as its
output:

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |

#================#

Where do we
even start??

81

Drawing complex figures: Strategy

� Write down some steps on paper before coding:
1. A pseudo-code description of the algorithm (in English)
2. A table of each line's contents, to help see the pattern

in the input

82

Pseudo-code

� pseudo-code: A written English description of an algorithm

� Example: Suppose we are trying to draw a box of stars which is
12 characters wide and 7 tall.

print 12 stars.
for each of 5 lines,

print a star.
print 10 spaces.
print a star.

print 12 stars.

* *
* *
* *
* *
* *

83

Drawing complex figures: Pseudo-code

� A possible pseudo-code for our complex figure task:
1. Draw top line with # , 16 =, then #

2. Draw the top half with the following on each line:
|

some spaces (possibly 0)
<>

some dots (possibly 0)
<>

more spaces (possibly 0)
|

3. Draw the bottom half, which is the same

as the top half but upside-down
4. Draw bottom line with # , 16 =, then #

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

84

Drawing complex figures: Tables

� A table of the lines in the "top half" of the figure:

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

1204

823

442

061

dotsspacesline

0

2

4

6

line * -2 + 8

12

8

4

0

line * 4 - 4

15

85

Drawing complex figures: Questions

� How many loops do we need on each line of
the top half of the output?

� Which loops are nested inside which other
loops?

� How should we use static methods to
represent the structure and redundancy of
the output?

86

Partial solution

// Prints the expanding pattern of <> for the top h alf of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= 4; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}

� Question: Is there a pattern to the numbers?

87

Magic numbers

� Sometimes we have values (called magic numbers) that
are used throughout the program.
� A normal variable cannot be used to fix the magic number problem. Why not?

public static void main(String[] args) {
int max = 3;
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= max; i++) {

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = max; i >= 1; i--) {

for (int j = i; j >= 1; j--) {
System.out.print(max);

}
System.out.println();

}
}

// ERROR: max not found (out of scope)

// ERROR: max not found (out of scope)

// ERROR: max not found (out of scope)

88

Solution: Class constants

� class constant: A variable that can be seen throughout the
program.
� The value of a constant can only be set when it is declared.
� It cannot be changed while the program is running, hence the

name: constant.

89

Class constant: Syntax

� Syntax:
public static final <type> <name> = <value>;

� Class constants have to be declared outside the methods.

� Convention: Constant identifiers are written in uppercase with
words separated by underscores.

� Examples:
public static final int DAYS_IN_WEEK = 7;

public static final double INTEREST_RATE = 3.5;

public static final int SSN = 658234569;

90

Class constant example

� Class constants eliminates redundancy.
public static final int MAX_VALUE = 3;

public static void main(String[] args) {
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= MAX_VALUE; i++) {

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = MAX_VALUE; i >= 1; i--) {

for (int j = i; j >= 1; j--) {
System.out.print(MAX_VALUE);

}
System.out.println();

}
}

16

91

Constants and figures

� Consider the task of drawing the following figures.

+/\/\/\/\/\+
| |
+/\/\/\/\/\+

+/\/\/\/\/\+
| |
| |
| |
| |
| |
+/\/\/\/\/\+

� How can a class constant help?

92

Boo! Redundancy! Boo!

� Note the repetition of numbers based on 5 in the code:
public static void drawFigure1() {

drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= 5; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 10; i++) {

System.out.print(" ");
}
System.out.println("|");

}

� It would be cumbersome to resize the figure.

Output:

+/\/\/\/\/\+
| |
+/\/\/\/\/\+

93

Class constants to the rescue!

� A class constant will fix the "magic number" problem.
public static final int FIGURE_WIDTH = 5;

public static void drawFigure1() {
drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= FIGURE_WIDTH; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 2 * FIGURE_WIDTH; i++) {

System.out.print(" ");
}
System.out.println("|");

}

94

Drawing complex figures: Resizing

� Modify the previous program to use a constant so that it can
show figures of different sizes.
� The figure originally shown has a size of 4.

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

A figure of size 3:

#============#
| <><> |
| <>....<> |
|<>........<>|
|<>........<>|
| <>....<> |
| <><> |
#============#

95

Drawing complex figures: Resizing

#================#
| <><> | #============#
<>....<>		<><>
<>........<>		<>....<>
<>............<>		<>........<>
<>............<>		<>........<>
<>........<>		<>....<>
<>....<>		<><>
<><>	#============#	
#================#

3

4

SIZE

1,2,3

1,2,3,4

line

line * -2 + 6

line * -2 + 8

line * -2 + (2 * SIZE)

line * 4 - 40,4,84,2,0

line * 4 - 40,4,8,126,4,2,0

line * 4 - 4dotsspaces

96

Partial solution

public static final int SIZE = 4;

// Prints the expanding pattern of <> for the top h alf of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= SIZE; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}

17

97

Class constant trickiness

� Adding a constant often changes the amount that is
added to a loop expression, but the multiplier (slope) is
usually unchanged.

public static final int SIZE = 4;

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

� Caution: A constant does NOT always replace every
occurrence of the original value.

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

98

Complex figure exercise

� Write a program that produces the following figure as its output.
� Use nested for loops and static methods where appropriate.

====+====
|
|
|
====+====
|
|
|
====+====

� Add a constant so that the figure can be resized.

99

Assignment 2: Space Needle
||
||
||
||

__/||__
__/:::||:::__

__/::::::||::::::__
__/:::::::::||:::::::::__
|""""""""""""""""""""""""|
/\/\/\/\/\/\/\/\/\/\//

/\/\/\/\/\/\/\/\//
/\/\/\/\/\/\//

/\/\/\/\//
||
||
||
||

%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
__/||__

__/:::||:::__
__/::::::||::::::__

__/:::::::::||:::::::::__
|""""""""""""""""""""""""|

