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Scanner objects

Readings: 3.4
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Interactive programs

� We have written programs that print console output.

� It is also possible to read input from the console.
� The user types the input into the console.
� The program uses the input to do something.

� Such a program is called an interactive program.

3

Interactive programs

� Interactive programs can be challenging.
� Computers and users think in very different ways.
� Users tend to “misbehave”.

4

Input and System.in

� System.out is an object!
� It has the methods named println and print for 

printing to the console.

� We read input using an object named System.in
� System.in is not intended to be used directly.
� We will use another object, from a class called Scanner , 

to read input from System.in .

5

Scanner

� Constructing a Scanner object to read the console:
Scanner <name> = new Scanner(System.in);

� Example:
Scanner console = new Scanner(System.in);

6

Scanner methods

� Some methods of Scanner :

� Each of these methods pauses your program until 
the user types input and presses Enter.
� Then the value typed is returned to your program.

reads and returns user input as a doublenextDouble()

reads and returns user input as an intnextInt()

reads and returns user input as a Stringnext()

DescriptionMethod
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Using a Scanner object

� Example:

System.out.print("How old are you? ");  // prompt
int age = console.nextInt();
System.out.println("You'll be 40 in " + (40 - age)

+ " years.");

� prompt: A message printed to the user, telling them 
what input to type.

8

Input tokens

� token: A unit of user input, as read by the Scanner .
� Tokens are separated by whitespace (spaces, tabs, new lines).
� How many tokens appear on the following line of input?

23  John Smith   42.0 "Hello world"

� When the token doesn't match the type the Scanner tries to read, 
the program crashes.
� Example:

System.out.print("What is your age? ");
int age = console.nextInt();

Sample Run:
What is your age? Timmy
InputMismatchException: 

at java.util.Scanner.throwFor(Unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
...

9

Importing classes

� Java class libraries: A large set of Java classes 
available for you to use.
� Classes are grouped into packages.
� To use the classes from a package, you must include an 

import declaration at the top of your program.

� Import declaration, general syntax:
import <package name>.*;

� Scanner is in a package named java.util
import java.util.*;

10

A complete program

import java.util.*; // so that I can use Scanner

public class ReadSomeInput {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("What is your first name? ");
String name = console.next();

System.out.print("And how old are you? ");
int age = console.nextInt();

System.out.println(name + " is " + age + ".  That's quite old!");
}

}

Sample Run:
What is your first name? Marty

How old are you? 12
Marty is 12.  That's quite old!

11

Another complete program

import java.util.*; // so that I can use Scanner

public class Average {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();

double average = (num1 + num2 + num3) / 3.0;
System.out.println("The average is " + average);

}
}

Sample Run:
Please type three numbers: 8 6 13
The average is 9.0

� Notice that the Scanner can read multiple values from one line.

12

Scanners as parameters

� The main method in the previous program could be better 
structured by grouping the collection of numbers into a method.

import java.util.*; // so that I can use Scanner

public class Average {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();

double average = (num1 + num2 + num3) / 3.0;
System.out.println("The average is " + average);

}
}
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Scanners as parameters

� To have multiple methods read user input, declare a 
Scanner in main and pass it to each method as a parameter.

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
int sum = readSum3( console );
double average = sum / 3.0;
System.out.println("The average is " + average);

}

public static int readSum3( Scanner console ) {
System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();
return num1 + num2 + num3;

}
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Another complete program: Version 2

� Consider changing the output to include the minimum value:

Please type three numbers: 8 6 13
The average is 9.0
The minimum value is 6

� How would we change the previous program?

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
int sum = readSum3(console);
double average = sum / 3.0;
System.out.println("The average is " + average);

// What goes here?
}

public static int readSum3(Scanner console) {
System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();
return num1 + num2 + num3;

}

15

Methods cannot return more than one value!  

import java.util.*;   // so that I can use Scanner

public class Average {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();

double average = (num1 + num2 + num3) / 3.0;
System.out.println("The average is " + average);
System.out.println("The minimum value is " +

Math.min(num1, Math.min(num2, num3)));
}

}
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Exercise: BMI

� A person's body mass index (BMI) is computed as follows:

� Write a program that produces the following output:
This program reads in data for two people
and computes their body mass index (BMI)
and weight status.

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Enter next person's information:
height (in inches)? 58.5
weight (in pounds)? 90

Person #1 body mass index = 23.485824
Person #2 body mass index = 18.487836949375414
Difference = 4.997987050624587

7032 ×=
height

weight
BMI
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Solution: BMI

// This program computes two people's body mass ind ex (BMI)
// and compares them.  The code uses parameters and  returns.

import java.util.*;  // so that I can use Scanner

public class BMI {
public static void main(String[] args) {

introduction();
Scanner console = new Scanner(System.in);
double bmi1 = processPerson( console );
double bmi2 = processPerson( console );
outputResults(bmi1, bmi2);

}

// prints a welcome message explaining the program
public static void introduction() {

System.out.println("This program reads in data for t wo people");
System.out.println("and computes their body mass ind ex (BMI)");
System.out.println("and weight status.");
System.out.println();

}

// report overall results
public static void outputResults(double bmi1, double  bmi2) {

System.out.println("Person #1 body mass index = " + bmi1);
System.out.println("Person #2 body mass index = " + bmi2);
double difference = Math.abs(bmi1 - bmi2);
System.out.println("Difference = " + difference);

}

18

Solution: BMI

// reads information for one person, computes their  BMI, and returns it
public static double processPerson( Scanner console ) {

System.out.println("Enter next person's information: ");
System.out.print("height (in inches)? ");
double height = console.nextDouble() ;

System.out.print("weight (in pounds)? ");
double weight = console.nextDouble() ;
System.out.println();

double bmi = getBMI(height, weight);
return bmi;

}

// Computes a person's body mass index based on the ir height and weight
// and returns the BMI as its result.
public static double getBMI(double height, double we ight) {

double bmi = weight / (height * height) * 703;
return bmi;

}
}
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Loop techniques

Readings: 4.1

20

Loop techniques

� Cumulative sum
� Fencepost loops

21

Adding many numbers

� Consider the following code:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int num1 = console.nextInt();

System.out.print("Type a number: ");
int num2 = console.nextInt();

System.out.print("Type a number: ");
int num3 = console.nextInt();

int sum = num1 + num2 + num3;

System.out.println("The sum is " + sum);

� Any ideas to improve the code?
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Cumulative sum

� The variables num1, num2, and num3 are unnecessary:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int sum = console.nextInt();

System.out.print("Type a number: ");
sum += console.nextInt();

System.out.print("Type a number: ");
sum += console.nextInt();

System.out.println("The sum is " + sum);

� cumulative sum: A variable that keeps a sum-in-progress and is 
updated many times until the task of summing is finished.
� The variable sum in the above code represents a cumulative sum.

23

Cumulative sum

� How could we modify the code to sum 100 numbers?
� Creating 100 copies of the same code would be redundant.

� An incorrect solution:
Scanner console = new Scanner(System.in);

for (int i = 1; i <= 100; i++) {

int sum = 0;

System.out.print("Type a number: ");

sum += console.nextInt();

}

System.out.println("The sum is " + sum);

� How could we modify the code to sum 100 numbers?
� Creating 100 copies of the same code would be redundant.

� An incorrect solution:
Scanner console = new Scanner(System.in);

for (int i = 1; i <= 100; i++) {

int sum = 0;

System.out.print("Type a number: ");

sum += console.nextInt();

}

System.out.println("The sum is " + sum); // sum out of scope

24

Cumulative sum loop

� A correct version:

Scanner console = new Scanner(System.in);
int sum = 0;
for (int i = 1; i <= 100; i++) {

System.out.print("Type a number: ");
sum += console.nextInt();

}
System.out.println("The sum is " + sum);

� Key idea: Cumulative sum variables must always be 
declared outside the loops that update them, so that they 
will continue to live after the loop is finished.
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User-guided cumulative sum

� The user's input can control the number of times the loop repeats:

Scanner console = new Scanner(System.in);
System.out.print("How many numbers to add? ");
int count = console.nextInt();

int sum = 0;
for (int i = 1; i <= count ; i++) {

System.out.print("Type a number: ");
sum += console.nextInt();

}
System.out.println("The sum is " + sum);

Sample Run:
How many numbers to add? 3
Type a number: 2
Type a number: 6
Type a number: 3
The sum is 11

26

Cumulative sum: Exercise

� Write a program that reads input of the number of hours two 
employees have worked and displays each employee's total and the
overall total hours.
� The company doesn't pay overtime, so cap any day at 8 hours.

Sample Run:
Employee 1: How many days? 3

Hours? 6
Hours? 12

Hours? 5

Employee 1's total paid hours = 19

Employee 2: How many days? 2

Hours? 11

Hours? 6

Employee 2's total paid hours = 14

Total paid hours for both employees = 33
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Cumulative sum: Solution

// Computes the total paid hours worked by two empl oyees.
// The company does not pay for more than 8 hours p er day.
// Uses a "cumulative sum" loop to compute the tota l hours.

import java.util.*;

public class Hours {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);

int hours1 = processEmployee(input, 1);
int hours2 = processEmployee(input, 2);

int total = hours1 + hours2;
System.out.println("Total paid hours for both employ ees = "

+ total);
}

...

28

Cumulative sum: Solution

...

// Reads hours information about one employee with the given number.
// Returns the total hours worked by the employee.
public static int processEmployee(Scanner console, in t number) {

System.out.print("Employee " + number + ": How many days? ");
int days = console.nextInt();

// totalHours is a cumulative sum of all days' hours  worked.
int totalHours = 0;
for (int i = 1; i <= days; i++) {

System.out.print("Hours? ");
int hours = console.nextInt();
hours = Math.min(hours, 8);       // cap at 8 hours  per day
totalHours += hours;

}

System.out.println("Employee " + number + "'s total paid hours = "
+ totalHours);

System.out.println();
return totalHours;

}
}
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Fencepost loops

“How do you build a fence?”

Readings: 4.1

30

The fencepost problem

� Problem: Write a static method named printNumbers that 
prints each number from 1 to a given maximum, separated 
by commas.

� Example:
printNumbers(5)

should print:
1, 2, 3, 4, 5
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A solution?

public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print( i + ", " );

}

System.out.println();  // to end the line

}

� Output from printNumbers(5) :
1, 2, 3, 4, 5 ,

32

How about this?

public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print( ", " + i );

}

System.out.println();  // to end the line

}

� Output from printNumbers(5) :
, 1, 2, 3, 4, 5

33

The fencepost problem

� We want to print n numbers but need only n - 1 commas.
� Similar to the task of building a fence

� If we repeatedly place a post and wire, the last post has an extra 
dangling wire.

� A flawed algorithm:
for (length of fence) {

plant a post.

attach some wire.

}

34

Fencepost loop

� The solution is to add an extra statement outside the loop 
that places the initial "post."
� This is called a fencepost loop.

� The revised algorithm:
plant a post.

for (length of fence - 1) {

attach some wire.

plant a post.

}
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The fencepost solution

public static void printNumbers(int max) {

System.out.print(1);

for (int i = 2; i <= max; i++) {

System.out.print(", " + i);

}

System.out.println();  // to end the line

}

� Output from printNumbers(5) :
1, 2, 3, 4, 5

36

Fencepost loop: Exercise

� Write a program that reads a base and a maximum power 
and prints all of the powers of the given base up to that 
max, separated by commas.

Base: 2

Max exponent: 9

The first 9 powers of 2 are: 

2, 4, 8, 16, 32, 64, 128, 256, 512
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if /else statements

Readings: 4.2

38

Conditionals

� “If you eat your vegetables, then you can 
have dessert.”

� “If you do your homework, then you may 
go outside to play, or else you’ll be 
grounded for life.”

39

The if statement

� if statement: A control structure that executes a block of 
statements only if a certain condition is true.

� General syntax:
if ( <test>) {

<statement(s)> ;
}

� Example:
double gpa = console.nextDouble();

if (gpa >= 3.0) {

System.out.println("Good job! Have a cookie.");

}

40

if statement flow chart

41

The if /else statement

� if/else statement: A control structure that executes one block of 
statements if a certain condition is true, and a second block of
statements if it is false.  We refer to each block as a branch.

� General syntax:
if ( <test>) {

<statement(s)> ;
} else {

<statement(s)> ;
}

� Example:
double gpa = console.nextDouble();
if (gpa >= 3.0) {

System.out.println("Good job! Have a cookie.");
} else {

System.out.println("No cookie for you!");
}

42

if /else statement flow chart
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The non-existent loop

� There is no such thing as an “if loop”—there is no loop!

44

Relational expressions

� The <test> used in an if or if/else statement is the 
same kind seen in a for loop.

for (int i = 1; i <= 10 ; i++) {

� These tests are called relational expressions and use the 
following relational operators:

true5.0 >= 5.0greater than or equal to>=

false126 <= 100less than or equal to<=

true10 > 5greater than>

false10 < 5less than<

true3.2 != 2.5does not equal!=

true1 + 1 == 2equals==

ValueExampleMeaningOperator

45

Evaluating relational expressions

� Relational operators have lower precedence than math 
operators.

5 * 7 >= 3 + 5 * (7 - 1)

5 * 7 >= 3 + 5 * 6

35    >= 3 + 30

35    >= 33

true

� Relational operators cannot be "chained" as they can in 
algebra.

2 <= x <= 10
true   <= 10

error!

46

if /else : Exercise

� Write code to read a number from the user and print 
whether it is even or odd using an if/else statement.

Example executions:
Type a number: 42

Your number is even

Type a number: 17

Your number is odd

47

Loops with if /else

� Loops can be used with if/else statements.

int nonnegatives = 0, negatives = 0;
for (int i = 1; i <= 10; i++) {

int next = console.nextInt();
if (next >= 0) {

nonnegatives++;
} else {

negatives++;
}

}

public static void printEvenOdd(int max) {
for (int i = 1; i <= max; i++) {

if (i % 2 == 0) {
System.out.println(i + " is even");

} else {
System.out.println(i + " is odd");

}
}

}

48

Errors in coding

� Many students new to if/else write code like this:

int percent = console.nextInt();
if (percent >= 90) {

System.out.println("You got an A!");
}
if (percent >= 80) {

System.out.println("You got a B!");
}
if (percent >= 70) {

System.out.println("You got a C!");
}
if (percent >= 60) {

System.out.println("You got a D!");
} else {

System.out.println("You got an F!");
}

� What’s the problem?
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Nested if /else statements

� Nested if /else statement: A chain of if/else that can select 
between many different outcomes based on several tests.

� General syntax:
if ( <test>) {

<statement(s)> ;
} else if ( <test>) {

<statement(s)> ;
} else {

<statement(s)> ;
} 

� Example:
if (number > 0) {

System.out.println("Positive");
} else if (number < 0) {

System.out.println("Negative");
} else {

System.out.println("Zero");
}

50

Nested if /else variations

� A nested if/else can end with an if or an else .
� If it ends with else , one of the branches must be taken.
� If it ends with if , the program might not execute any branch.

if (<test>) {
<statement(s)>;

} else if ( <test>) {
<statement(s)>;

} else {
<statement(s)>;

}

if (<test>) {
<statement(s)>;

} else if ( <test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

}

51

Nested if /else flow chart

if (<test>) {
<statement(s)>;

} else if ( <test>) {
<statement(s)>;

} else {
<statement(s)>;

}

52

Nested if /else if flow chart

if (<test>) {
<statement(s)>;

} else if ( <test>) {
<statement(s)>;

} else if (<test>)  {
<statement(s)>;

}

53

Nested if /else variations

if (place == 1) {
System.out.println("You win the gold medal!");

} else if (place == 2) {
System.out.println("You win a silver medal!");

} else if (place == 3) {
System.out.println("You earned a bronze medal.");

}

� Are there any cases where this code will not print a 
message?

� How could we modify it to print a message to non-
medalists?

54

Sequential if flow chart

if ( <test>) {
<statement(s)>;

}
if ( <test>) {

<statement(s)>;
}

if ( <test>) {
<statement(s)>;

}
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Summary: if /else structures

� Choose 0 or 1 set of statements

if ( <test>) {
<statement(s)>;

} else if ( <test>) {
<statement(s)>;

} else if ( <test>) {
<statement(s)>;

}

� Choose 0, 1, or more set of statements

if ( <test>) {
<statement(s)>;

}
if ( <test>) {

<statement(s)>;
} 
if ( <test>) {

<statement(s)>;
}

� Choose exactly 1 set of statements

if ( <test>) {
<statement(s)>;

} else if ( <test>) {
<statement(s)>;

} else {
<statement(s)>;

}

56

Which if /else construct to use?

� Reading the user's GPA and printing whether the student is on 
the dean's list (3.8 to 4.0) or honor roll (3.5 to 3.8)

� Printing whether a number is even or odd

� Printing whether a user is lower-class, middle-class, or upper-
class based on their income

� Determining whether a number is divisible by 2, 3, and/or 5

� Printing a user's grade of A, B, C, D, or F based on their 
percentage in the course

57

Which if /else construct to use?

� Reading the user's GPA and printing whether the student is on 
the dean's list (3.8 to 4.0) or honor roll (3.5 to 3.8)

if / else if

� Printing whether a number is even or odd
if / else

� Printing whether a user is lower-class, middle-class, or upper-
class based on their income

if / else if / else

� Determining whether a number is divisible by 2, 3, and/or 5
if / if / if

� Printing a user's grade of A, B, C, D, or F based on their 
percentage in the course

if / else if / else if / else if / else

58

The if /else hammer

int z;
if (x > y) {

z = x;
} else {

z = y;
}

double d = a;
if (b < d) {

d = b;
}
if (c < d) {

d = c;
}

int z = Math.max(x, y);

double d = Math.min(a, Math.min(b, c));

� Just because you learned a new construct does not mean that 
every new problem has to be solved using that construct!

59

Factoring if/else

Readings: 4.3 (pg. 230 – 232)

60

Factoring if/else

� factoring: extracting common/redundant code

� Factoring if/else code reduces the size of the if and 
else statements

� Factoring tips:
� If the start of each branch is the same, move it before the if/else .
� If the end of each branch is the same, move it after the if/else .
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Factoring: Before

if (money < 500) {
System.out.println("You have, $" + money + " left.") ;
System.out.print("Caution!  Bet carefully.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

} else if (money < 1000) {
System.out.println("You have, $" + money + " left.") ;
System.out.print("Consider betting moderately.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

} else {
System.out.println("You have, $" + money + " left.") ;
System.out.print("You may bet liberally.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

}

62

Factoring: After

System.out.println("You have, $" + money + " left.") ;

if (money < 500) {
System.out.print("Caution!  Bet carefully.");

} else if (money < 1000) {
System.out.print("Consider betting moderately.");

} else {
System.out.print("You may bet liberally.");

}

System.out.print("How much do you want to bet? ");
bet = console.nextInt();

63

Subtleties of if /else

Readings: 4.3 (pg. 225 – 226)

64

Variable initialization

String message;

if (gpa >= 3.0) {

message = "Welcome to the UW!";

}

if (gpa >= 2.0) {

message = "Have you considered applying to WSU?";

}

if (gpa < 2.0) {

message = "I hear Harvard still needs students...";

}

System.out.println(message);

� The compiler will complain that "variable message might not 
have been initialized" .  Why?

65

Variable initialization

� The solution:

String message;
if (gpa >= 3.0) {

message = "Welcome to the UW!";
} else if (gpa >= 2.0) {

message = "Have you considered applying to WSU?";
} else { // gpa < 2.0

message = "I hear Harvard still needs students...";
}
System.out.println(message);

66

Return

� Methods can return different values under different conditions:

public static int min(int a, int b) {
if (a > b) {

return b;
} else {

return a;
}

}

public static String message(int place) {
if (place == 1) {

return "You won!";
} else {

return "If you're not first, you're last!";
}

}
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Errors in coding

public static int min(int a, int b) {

if (a > b) {

return b;

}

}

� The compiler will complain about a "missing return 

statement" .  Why?

� ERROR:  Not returning a value in every path.  In the above 
example, what if a <= b ?

68

How about this?

public static int min(int a, int b) {
if (a > b) {

return b;
} else if (a <= b) {

return a;
}

}

� It still produces the "missing return statement" error.  Why?
� To our eyes, it is clear that all paths (greater, equal, less) do 

return a value.
� But the compiler thinks that if/else if code might choose not 

to execute any branch, so it refuses to accept this code.

� How can we fix it?

69

Putting it all together: Exercises

� Write a method named countFactors that returns the 
number of factors of a given integer.
� For example, countFactors(60) returns 12 because 1, 2, 3, 

4, 5, 6, 10, 12, 15, 20, 30, and 60 are factors of 60.

� Write a method named numUnique that accepts two 
integers as parameters and returns how many unique 
values were passed.
� For example, numUnique(3, 7) returns 2 because 3 and 7 are 

two unique numbers, but numUnique(4, 4) returns 1 because 
4 and 4 only represent one unique number.

70

Exercise: Counting primes

� Write a program that prompts the user for a maximum 
integer and prints out a list of all prime numbers up to that 
maximum.  Here is an example log of execution:

Maximum number? 50

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,  47

15 total primes
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Solution: Counting primes

import java.util.*;

public class PrintPrimes {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
printPrimes(getNumber(console));

}

public static int countFactors(int num) {
int count = 0;
for (int i = 1; i <= num; i++) {

if (num % i == 0) {
count++;

}
}

return count;
}

...
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Solution: Counting primes

public static int getNumber(Scanner console) {
System.out.print("Maximum number? ");
return console.nextInt();

}

public static void printPrimes(int max) {
int numPrimes = 0;
if (max >= 2) {

System.out.print(2);
numPrimes++;
for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {
numPrimes++;
System.out.print(", " + i);

}
}
System.out.println();

}

System.out.println(numPrimes + " total primes");
}

}
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Debugging 101

Readings: None

74

Why won’t it toast?

� You arrive at your dorm after a thought-
provoking lecture of CSE 142.  To feed your 
brain, you put some bread into your toaster 
oven and set the dial for 5 minutes.  The 
toaster oven ticks away.  After
five minutes, the toaster oven
dings.  You take the bread out,
but it’s not even toasted.  What
do you do?
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What’s wrong with this code?

import java.util.*;

public class Buggy {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("How many numbers to average? ");
int count = console.nextInt();
int sum = computeSum(console, count);
System.out.println("The average is: " + (sum / count ));

}

public static int computeSum(Scanner input, int num) {
int total = 0;
for (int i = 1; i <= num; i++) {

System.out.print("#" + i + ": ");
total = input.nextInt();

}
return total;     

}
}

76

Always remember

� Learn how to use the debugger
� See the notes on the web page under “jGRASP

Tutorial”

� System.out.println is your friend.  Use it 
to print out variables and expressions.
� Example:

System.out.println("x = " + x);


