
1

1

Scanner objects

Readings: 3.4

2

Interactive programs

� We have written programs that print console output.

� It is also possible to read input from the console.
� The user types the input into the console.
� The program uses the input to do something.

� Such a program is called an interactive program.

3

Interactive programs

� Interactive programs can be challenging.
� Computers and users think in very different ways.
� Users tend to “misbehave”.

4

Input and System.in

� System.out is an object!
� It has the methods named println and print for

printing to the console.

� We read input using an object named System.in
� System.in is not intended to be used directly.
� We will use another object, from a class called Scanner ,

to read input from System.in .

5

Scanner

� Constructing a Scanner object to read the console:
Scanner <name> = new Scanner(System.in);

� Example:
Scanner console = new Scanner(System.in);

6

Scanner methods

� Some methods of Scanner :

� Each of these methods pauses your program until
the user types input and presses Enter.
� Then the value typed is returned to your program.

reads and returns user input as a doublenextDouble()

reads and returns user input as an intnextInt()

reads and returns user input as a Stringnext()

DescriptionMethod

2

7

Using a Scanner object

� Example:

System.out.print("How old are you? "); // prompt
int age = console.nextInt();
System.out.println("You'll be 40 in " + (40 - age)

+ " years.");

� prompt: A message printed to the user, telling them
what input to type.

8

Input tokens

� token: A unit of user input, as read by the Scanner .
� Tokens are separated by whitespace (spaces, tabs, new lines).
� How many tokens appear on the following line of input?

23 John Smith 42.0 "Hello world"

� When the token doesn't match the type the Scanner tries to read,
the program crashes.
� Example:

System.out.print("What is your age? ");
int age = console.nextInt();

Sample Run:
What is your age? Timmy
InputMismatchException:

at java.util.Scanner.throwFor(Unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
...

9

Importing classes

� Java class libraries: A large set of Java classes
available for you to use.
� Classes are grouped into packages.
� To use the classes from a package, you must include an

import declaration at the top of your program.

� Import declaration, general syntax:
import <package name>.*;

� Scanner is in a package named java.util
import java.util.*;

10

A complete program

import java.util.*; // so that I can use Scanner

public class ReadSomeInput {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("What is your first name? ");
String name = console.next();

System.out.print("And how old are you? ");
int age = console.nextInt();

System.out.println(name + " is " + age + ". That's quite old!");
}

}

Sample Run:
What is your first name? Marty

How old are you? 12
Marty is 12. That's quite old!

11

Another complete program

import java.util.*; // so that I can use Scanner

public class Average {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();

double average = (num1 + num2 + num3) / 3.0;
System.out.println("The average is " + average);

}
}

Sample Run:
Please type three numbers: 8 6 13
The average is 9.0

� Notice that the Scanner can read multiple values from one line.

12

Scanners as parameters

� The main method in the previous program could be better
structured by grouping the collection of numbers into a method.

import java.util.*; // so that I can use Scanner

public class Average {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();

double average = (num1 + num2 + num3) / 3.0;
System.out.println("The average is " + average);

}
}

3

13

Scanners as parameters

� To have multiple methods read user input, declare a
Scanner in main and pass it to each method as a parameter.

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
int sum = readSum3(console);
double average = sum / 3.0;
System.out.println("The average is " + average);

}

public static int readSum3(Scanner console) {
System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();
return num1 + num2 + num3;

}

14

Another complete program: Version 2

� Consider changing the output to include the minimum value:

Please type three numbers: 8 6 13
The average is 9.0
The minimum value is 6

� How would we change the previous program?

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
int sum = readSum3(console);
double average = sum / 3.0;
System.out.println("The average is " + average);

// What goes here?
}

public static int readSum3(Scanner console) {
System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();
return num1 + num2 + num3;

}

15

Methods cannot return more than one value!

import java.util.*; // so that I can use Scanner

public class Average {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextInt();

double average = (num1 + num2 + num3) / 3.0;
System.out.println("The average is " + average);
System.out.println("The minimum value is " +

Math.min(num1, Math.min(num2, num3)));
}

}

16

Exercise: BMI

� A person's body mass index (BMI) is computed as follows:

� Write a program that produces the following output:
This program reads in data for two people
and computes their body mass index (BMI)
and weight status.

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Enter next person's information:
height (in inches)? 58.5
weight (in pounds)? 90

Person #1 body mass index = 23.485824
Person #2 body mass index = 18.487836949375414
Difference = 4.997987050624587

7032 ×=
height

weight
BMI

17

Solution: BMI

// This program computes two people's body mass ind ex (BMI)
// and compares them. The code uses parameters and returns.

import java.util.*; // so that I can use Scanner

public class BMI {
public static void main(String[] args) {

introduction();
Scanner console = new Scanner(System.in);
double bmi1 = processPerson(console);
double bmi2 = processPerson(console);
outputResults(bmi1, bmi2);

}

// prints a welcome message explaining the program
public static void introduction() {

System.out.println("This program reads in data for t wo people");
System.out.println("and computes their body mass ind ex (BMI)");
System.out.println("and weight status.");
System.out.println();

}

// report overall results
public static void outputResults(double bmi1, double bmi2) {

System.out.println("Person #1 body mass index = " + bmi1);
System.out.println("Person #2 body mass index = " + bmi2);
double difference = Math.abs(bmi1 - bmi2);
System.out.println("Difference = " + difference);

}

18

Solution: BMI

// reads information for one person, computes their BMI, and returns it
public static double processPerson(Scanner console) {

System.out.println("Enter next person's information: ");
System.out.print("height (in inches)? ");
double height = console.nextDouble() ;

System.out.print("weight (in pounds)? ");
double weight = console.nextDouble() ;
System.out.println();

double bmi = getBMI(height, weight);
return bmi;

}

// Computes a person's body mass index based on the ir height and weight
// and returns the BMI as its result.
public static double getBMI(double height, double we ight) {

double bmi = weight / (height * height) * 703;
return bmi;

}
}

4

19

Loop techniques

Readings: 4.1

20

Loop techniques

� Cumulative sum
� Fencepost loops

21

Adding many numbers

� Consider the following code:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int num1 = console.nextInt();

System.out.print("Type a number: ");
int num2 = console.nextInt();

System.out.print("Type a number: ");
int num3 = console.nextInt();

int sum = num1 + num2 + num3;

System.out.println("The sum is " + sum);

� Any ideas to improve the code?

22

Cumulative sum

� The variables num1, num2, and num3 are unnecessary:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int sum = console.nextInt();

System.out.print("Type a number: ");
sum += console.nextInt();

System.out.print("Type a number: ");
sum += console.nextInt();

System.out.println("The sum is " + sum);

� cumulative sum: A variable that keeps a sum-in-progress and is
updated many times until the task of summing is finished.
� The variable sum in the above code represents a cumulative sum.

23

Cumulative sum

� How could we modify the code to sum 100 numbers?
� Creating 100 copies of the same code would be redundant.

� An incorrect solution:
Scanner console = new Scanner(System.in);

for (int i = 1; i <= 100; i++) {

int sum = 0;

System.out.print("Type a number: ");

sum += console.nextInt();

}

System.out.println("The sum is " + sum);

� How could we modify the code to sum 100 numbers?
� Creating 100 copies of the same code would be redundant.

� An incorrect solution:
Scanner console = new Scanner(System.in);

for (int i = 1; i <= 100; i++) {

int sum = 0;

System.out.print("Type a number: ");

sum += console.nextInt();

}

System.out.println("The sum is " + sum); // sum out of scope

24

Cumulative sum loop

� A correct version:

Scanner console = new Scanner(System.in);
int sum = 0;
for (int i = 1; i <= 100; i++) {

System.out.print("Type a number: ");
sum += console.nextInt();

}
System.out.println("The sum is " + sum);

� Key idea: Cumulative sum variables must always be
declared outside the loops that update them, so that they
will continue to live after the loop is finished.

5

25

User-guided cumulative sum

� The user's input can control the number of times the loop repeats:

Scanner console = new Scanner(System.in);
System.out.print("How many numbers to add? ");
int count = console.nextInt();

int sum = 0;
for (int i = 1; i <= count ; i++) {

System.out.print("Type a number: ");
sum += console.nextInt();

}
System.out.println("The sum is " + sum);

Sample Run:
How many numbers to add? 3
Type a number: 2
Type a number: 6
Type a number: 3
The sum is 11

26

Cumulative sum: Exercise

� Write a program that reads input of the number of hours two
employees have worked and displays each employee's total and the
overall total hours.
� The company doesn't pay overtime, so cap any day at 8 hours.

Sample Run:
Employee 1: How many days? 3

Hours? 6
Hours? 12

Hours? 5

Employee 1's total paid hours = 19

Employee 2: How many days? 2

Hours? 11

Hours? 6

Employee 2's total paid hours = 14

Total paid hours for both employees = 33

27

Cumulative sum: Solution

// Computes the total paid hours worked by two empl oyees.
// The company does not pay for more than 8 hours p er day.
// Uses a "cumulative sum" loop to compute the tota l hours.

import java.util.*;

public class Hours {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);

int hours1 = processEmployee(input, 1);
int hours2 = processEmployee(input, 2);

int total = hours1 + hours2;
System.out.println("Total paid hours for both employ ees = "

+ total);
}

...

28

Cumulative sum: Solution

...

// Reads hours information about one employee with the given number.
// Returns the total hours worked by the employee.
public static int processEmployee(Scanner console, in t number) {

System.out.print("Employee " + number + ": How many days? ");
int days = console.nextInt();

// totalHours is a cumulative sum of all days' hours worked.
int totalHours = 0;
for (int i = 1; i <= days; i++) {

System.out.print("Hours? ");
int hours = console.nextInt();
hours = Math.min(hours, 8); // cap at 8 hours per day
totalHours += hours;

}

System.out.println("Employee " + number + "'s total paid hours = "
+ totalHours);

System.out.println();
return totalHours;

}
}

29

Fencepost loops

“How do you build a fence?”

Readings: 4.1

30

The fencepost problem

� Problem: Write a static method named printNumbers that
prints each number from 1 to a given maximum, separated
by commas.

� Example:
printNumbers(5)

should print:
1, 2, 3, 4, 5

6

31

A solution?

public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print(i + ", ");

}

System.out.println(); // to end the line

}

� Output from printNumbers(5) :
1, 2, 3, 4, 5 ,

32

How about this?

public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {

System.out.print(", " + i);

}

System.out.println(); // to end the line

}

� Output from printNumbers(5) :
, 1, 2, 3, 4, 5

33

The fencepost problem

� We want to print n numbers but need only n - 1 commas.
� Similar to the task of building a fence

� If we repeatedly place a post and wire, the last post has an extra
dangling wire.

� A flawed algorithm:
for (length of fence) {

plant a post.

attach some wire.

}

34

Fencepost loop

� The solution is to add an extra statement outside the loop
that places the initial "post."
� This is called a fencepost loop.

� The revised algorithm:
plant a post.

for (length of fence - 1) {

attach some wire.

plant a post.

}

35

The fencepost solution

public static void printNumbers(int max) {

System.out.print(1);

for (int i = 2; i <= max; i++) {

System.out.print(", " + i);

}

System.out.println(); // to end the line

}

� Output from printNumbers(5) :
1, 2, 3, 4, 5

36

Fencepost loop: Exercise

� Write a program that reads a base and a maximum power
and prints all of the powers of the given base up to that
max, separated by commas.

Base: 2

Max exponent: 9

The first 9 powers of 2 are:

2, 4, 8, 16, 32, 64, 128, 256, 512

7

37

if /else statements

Readings: 4.2

38

Conditionals

� “If you eat your vegetables, then you can
have dessert.”

� “If you do your homework, then you may
go outside to play, or else you’ll be
grounded for life.”

39

The if statement

� if statement: A control structure that executes a block of
statements only if a certain condition is true.

� General syntax:
if (<test>) {

<statement(s)> ;
}

� Example:
double gpa = console.nextDouble();

if (gpa >= 3.0) {

System.out.println("Good job! Have a cookie.");

}

40

if statement flow chart

41

The if /else statement

� if/else statement: A control structure that executes one block of
statements if a certain condition is true, and a second block of
statements if it is false. We refer to each block as a branch.

� General syntax:
if (<test>) {

<statement(s)> ;
} else {

<statement(s)> ;
}

� Example:
double gpa = console.nextDouble();
if (gpa >= 3.0) {

System.out.println("Good job! Have a cookie.");
} else {

System.out.println("No cookie for you!");
}

42

if /else statement flow chart

8

43

The non-existent loop

� There is no such thing as an “if loop”—there is no loop!

44

Relational expressions

� The <test> used in an if or if/else statement is the
same kind seen in a for loop.

for (int i = 1; i <= 10 ; i++) {

� These tests are called relational expressions and use the
following relational operators:

true5.0 >= 5.0greater than or equal to>=

false126 <= 100less than or equal to<=

true10 > 5greater than>

false10 < 5less than<

true3.2 != 2.5does not equal!=

true1 + 1 == 2equals==

ValueExampleMeaningOperator

45

Evaluating relational expressions

� Relational operators have lower precedence than math
operators.

5 * 7 >= 3 + 5 * (7 - 1)

5 * 7 >= 3 + 5 * 6

35 >= 3 + 30

35 >= 33

true

� Relational operators cannot be "chained" as they can in
algebra.

2 <= x <= 10
true <= 10

error!

46

if /else : Exercise

� Write code to read a number from the user and print
whether it is even or odd using an if/else statement.

Example executions:
Type a number: 42

Your number is even

Type a number: 17

Your number is odd

47

Loops with if /else

� Loops can be used with if/else statements.

int nonnegatives = 0, negatives = 0;
for (int i = 1; i <= 10; i++) {

int next = console.nextInt();
if (next >= 0) {

nonnegatives++;
} else {

negatives++;
}

}

public static void printEvenOdd(int max) {
for (int i = 1; i <= max; i++) {

if (i % 2 == 0) {
System.out.println(i + " is even");

} else {
System.out.println(i + " is odd");

}
}

}

48

Errors in coding

� Many students new to if/else write code like this:

int percent = console.nextInt();
if (percent >= 90) {

System.out.println("You got an A!");
}
if (percent >= 80) {

System.out.println("You got a B!");
}
if (percent >= 70) {

System.out.println("You got a C!");
}
if (percent >= 60) {

System.out.println("You got a D!");
} else {

System.out.println("You got an F!");
}

� What’s the problem?

9

49

Nested if /else statements

� Nested if /else statement: A chain of if/else that can select
between many different outcomes based on several tests.

� General syntax:
if (<test>) {

<statement(s)> ;
} else if (<test>) {

<statement(s)> ;
} else {

<statement(s)> ;
}

� Example:
if (number > 0) {

System.out.println("Positive");
} else if (number < 0) {

System.out.println("Negative");
} else {

System.out.println("Zero");
}

50

Nested if /else variations

� A nested if/else can end with an if or an else .
� If it ends with else , one of the branches must be taken.
� If it ends with if , the program might not execute any branch.

if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

} else {
<statement(s)>;

}

if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

}

51

Nested if /else flow chart

if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

} else {
<statement(s)>;

}

52

Nested if /else if flow chart

if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

}

53

Nested if /else variations

if (place == 1) {
System.out.println("You win the gold medal!");

} else if (place == 2) {
System.out.println("You win a silver medal!");

} else if (place == 3) {
System.out.println("You earned a bronze medal.");

}

� Are there any cases where this code will not print a
message?

� How could we modify it to print a message to non-
medalists?

54

Sequential if flow chart

if (<test>) {
<statement(s)>;

}
if (<test>) {

<statement(s)>;
}

if (<test>) {
<statement(s)>;

}

10

55

Summary: if /else structures

� Choose 0 or 1 set of statements

if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

}

� Choose 0, 1, or more set of statements

if (<test>) {
<statement(s)>;

}
if (<test>) {

<statement(s)>;
}
if (<test>) {

<statement(s)>;
}

� Choose exactly 1 set of statements

if (<test>) {
<statement(s)>;

} else if (<test>) {
<statement(s)>;

} else {
<statement(s)>;

}

56

Which if /else construct to use?

� Reading the user's GPA and printing whether the student is on
the dean's list (3.8 to 4.0) or honor roll (3.5 to 3.8)

� Printing whether a number is even or odd

� Printing whether a user is lower-class, middle-class, or upper-
class based on their income

� Determining whether a number is divisible by 2, 3, and/or 5

� Printing a user's grade of A, B, C, D, or F based on their
percentage in the course

57

Which if /else construct to use?

� Reading the user's GPA and printing whether the student is on
the dean's list (3.8 to 4.0) or honor roll (3.5 to 3.8)

if / else if

� Printing whether a number is even or odd
if / else

� Printing whether a user is lower-class, middle-class, or upper-
class based on their income

if / else if / else

� Determining whether a number is divisible by 2, 3, and/or 5
if / if / if

� Printing a user's grade of A, B, C, D, or F based on their
percentage in the course

if / else if / else if / else if / else

58

The if /else hammer

int z;
if (x > y) {

z = x;
} else {

z = y;
}

double d = a;
if (b < d) {

d = b;
}
if (c < d) {

d = c;
}

int z = Math.max(x, y);

double d = Math.min(a, Math.min(b, c));

� Just because you learned a new construct does not mean that
every new problem has to be solved using that construct!

59

Factoring if/else

Readings: 4.3 (pg. 230 – 232)

60

Factoring if/else

� factoring: extracting common/redundant code

� Factoring if/else code reduces the size of the if and
else statements

� Factoring tips:
� If the start of each branch is the same, move it before the if/else .
� If the end of each branch is the same, move it after the if/else .

11

61

Factoring: Before

if (money < 500) {
System.out.println("You have, $" + money + " left.") ;
System.out.print("Caution! Bet carefully.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

} else if (money < 1000) {
System.out.println("You have, $" + money + " left.") ;
System.out.print("Consider betting moderately.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

} else {
System.out.println("You have, $" + money + " left.") ;
System.out.print("You may bet liberally.");
System.out.print("How much do you want to bet? ");
bet = console.nextInt();

}

62

Factoring: After

System.out.println("You have, $" + money + " left.") ;

if (money < 500) {
System.out.print("Caution! Bet carefully.");

} else if (money < 1000) {
System.out.print("Consider betting moderately.");

} else {
System.out.print("You may bet liberally.");

}

System.out.print("How much do you want to bet? ");
bet = console.nextInt();

63

Subtleties of if /else

Readings: 4.3 (pg. 225 – 226)

64

Variable initialization

String message;

if (gpa >= 3.0) {

message = "Welcome to the UW!";

}

if (gpa >= 2.0) {

message = "Have you considered applying to WSU?";

}

if (gpa < 2.0) {

message = "I hear Harvard still needs students...";

}

System.out.println(message);

� The compiler will complain that "variable message might not
have been initialized" . Why?

65

Variable initialization

� The solution:

String message;
if (gpa >= 3.0) {

message = "Welcome to the UW!";
} else if (gpa >= 2.0) {

message = "Have you considered applying to WSU?";
} else { // gpa < 2.0

message = "I hear Harvard still needs students...";
}
System.out.println(message);

66

Return

� Methods can return different values under different conditions:

public static int min(int a, int b) {
if (a > b) {

return b;
} else {

return a;
}

}

public static String message(int place) {
if (place == 1) {

return "You won!";
} else {

return "If you're not first, you're last!";
}

}

12

67

Errors in coding

public static int min(int a, int b) {

if (a > b) {

return b;

}

}

� The compiler will complain about a "missing return

statement" . Why?

� ERROR: Not returning a value in every path. In the above
example, what if a <= b ?

68

How about this?

public static int min(int a, int b) {
if (a > b) {

return b;
} else if (a <= b) {

return a;
}

}

� It still produces the "missing return statement" error. Why?
� To our eyes, it is clear that all paths (greater, equal, less) do

return a value.
� But the compiler thinks that if/else if code might choose not

to execute any branch, so it refuses to accept this code.

� How can we fix it?

69

Putting it all together: Exercises

� Write a method named countFactors that returns the
number of factors of a given integer.
� For example, countFactors(60) returns 12 because 1, 2, 3,

4, 5, 6, 10, 12, 15, 20, 30, and 60 are factors of 60.

� Write a method named numUnique that accepts two
integers as parameters and returns how many unique
values were passed.
� For example, numUnique(3, 7) returns 2 because 3 and 7 are

two unique numbers, but numUnique(4, 4) returns 1 because
4 and 4 only represent one unique number.

70

Exercise: Counting primes

� Write a program that prompts the user for a maximum
integer and prints out a list of all prime numbers up to that
maximum. Here is an example log of execution:

Maximum number? 50

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

15 total primes

71

Solution: Counting primes

import java.util.*;

public class PrintPrimes {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
printPrimes(getNumber(console));

}

public static int countFactors(int num) {
int count = 0;
for (int i = 1; i <= num; i++) {

if (num % i == 0) {
count++;

}
}

return count;
}

...

72

Solution: Counting primes

public static int getNumber(Scanner console) {
System.out.print("Maximum number? ");
return console.nextInt();

}

public static void printPrimes(int max) {
int numPrimes = 0;
if (max >= 2) {

System.out.print(2);
numPrimes++;
for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {
numPrimes++;
System.out.print(", " + i);

}
}
System.out.println();

}

System.out.println(numPrimes + " total primes");
}

}

13

73

Debugging 101

Readings: None

74

Why won’t it toast?

� You arrive at your dorm after a thought-
provoking lecture of CSE 142. To feed your
brain, you put some bread into your toaster
oven and set the dial for 5 minutes. The
toaster oven ticks away. After
five minutes, the toaster oven
dings. You take the bread out,
but it’s not even toasted. What
do you do?

75

What’s wrong with this code?

import java.util.*;

public class Buggy {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("How many numbers to average? ");
int count = console.nextInt();
int sum = computeSum(console, count);
System.out.println("The average is: " + (sum / count));

}

public static int computeSum(Scanner input, int num) {
int total = 0;
for (int i = 1; i <= num; i++) {

System.out.print("#" + i + ": ");
total = input.nextInt();

}
return total;

}
}

76

Always remember

� Learn how to use the debugger
� See the notes on the web page under “jGRASP

Tutorial”

� System.out.println is your friend. Use it
to print out variables and expressions.
� Example:

System.out.println("x = " + x);

