
1

1

Files

Readings: 6.1 – 6.2

2

Reading data from files

� Creating a Scanner for a file, general syntax:
Scanner <name> = new Scanner(new File(" <file name>"));

� Example:
Scanner input = new Scanner(new File("numbers.txt")) ;

� Instead of getting data from the keyboard via
System.in , this Scanner object gets data from the
file numbers.txt in the current folder (directory).

3

File class

� The File class is in the java.io package. To use
it, include the import declaration:

import java.io.*;

� io (or I/O) stands for input/output.

4

Compiler error with files

� The following program does not compile:

1 import java.io.*; // for File
2 import java.util.*; // for Scanner
3
4 public class ReadFile {
5 public static void main(String[] args) {
6 Scanner input = new Scanner(new File("data .txt"));
7 // do something
8 }
9 }

� The compiler reports:
ReadFile.java:6: unreported exception
java.io.FileNotFoundException; must be caught or
declared to be thrown

5

Exceptions

� exception: An object representing a program error.
� Programs with invalid logic will cause ("throw")

exceptions.

� Examples:
� Trying to read a file that does not exist.

� Dividing by 0.
� Using charAt(10) on a string of length 5.

6

Checked exceptions

� checked exception: An exception that must be
explicitly handled (otherwise the program will not
compile).
� We must either:

� handle ("catch") the exception, or
� explicitly state that we choose not to handle the

exception (and accept that the program will crash if
the exception occurs)

� Why is a FileNotFoundException a checked exception?

2

7

throws clause: How to waive your rights

� throws clause: Tells the compiler that a method
may throw an exception.
� Like a waiver of liability:

"I hereby agree that this method might throw an exception,
and I accept the consequences (crashing) if this happens."

� throws clause, general syntax:
public static <type> <name>(<params>) throws <type> {

� Example:
public static void main(String[] args)

throws FileNotFoundException {

8

Patched code

import java.io.*; // for File, FileNotFoundExce ption

import java.util.*; // for Scanner

public class ReadFile {

public static void main(String[] args)
throws FileNotFoundException {

Scanner input = new Scanner(new File("data.txt"));
// do something

}

}

9

Recap: Tokens

� The Scanner breaks apart the input into tokens. It will interpret
the tokens in different ways depending on if you call next() ,
nextInt() , or nextDouble() .

� Assuming the following input file:
23 3.14

"John Smith"

The tokens in the input can be interpreted as the given types:

Token Type(s)
1. 23 int , double , String
2. 3.14 double , String
3. "John String
4. Smith" String

10

The input cursor

� Consider a file that contains this text:
308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� A Scanner views all input as a stream of
characters, which it processes with its input cursor:

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

11

Consuming tokens

� Each call to next , nextInt , nextDouble , etc.
advances the cursor to the end of the current token,
skipping over any whitespace. Each call consumes
the input.

� input.nextDouble(); // 308.2

308.2 \n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

� input.next(); // "14.9"

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

12

Exercise: Version 1

� Consider an input file named numbers.dat :
308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� Write a program that reads the first 5 values from this file and prints
them along with their sum.

Output:
number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

Sum = 337.19999999999993

3

13

Solution: Version 1

// Displays the first 5 numbers in the given file,
// and displays their sum at the end.

import java.io.*; // for File, FileNotFoundExcept ion
import java.util.*; // for Scanner

public class Echo {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat"));
double sum = 0.0;
for (int i = 1; i <= 5; i++) {

double next = input.nextDouble() ;
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

14

Version 1 deficiency

� The preceding program is impractical because it
only processes exactly 5 values from the input file.

� A better program would read the entire file,
regardless of how many values it contained.

� How would we accomplish that?

15

Look before you read (Section 5.3)

� The Scanner has useful methods for testing to see
what the next input token will be.

whether the next token can be
interpreted as type int

hasNextInt()

whether the next token can be
interpreted as type double

hasNextDouble()

whether any more tokens remainhasNext()

DescriptionMethod Name

16

Exercise: Version 2

� Rewrite the previous program so that it reads the
entire file.

Output:
number = 308.2
number = 14.9
number = 7.4
number = 2.8
number = 3.9
number = 4.7
number = -15.4
number = 2.8
Sum = 329.29999999999995

17

Solution: Version 2

// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File, FileNotFoundExcept ion
import java.util.*; // for Scanner

public class Echo2 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat")) ;
double sum = 0.0;
while (input.hasNextDouble()) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

18

Exercise: Version 3

� Modify the preceding program again so that it will
handle files that contain non-numeric tokens.
� The program should skip any such tokens.

� For example, the program should produce the same
output as before when given this input file:

308.2 hello

14.9 7.4 bad stuff 2.8

3.9 4.7 oops -15.4

:-) 2.8 @#*($&

4

19

Solution: Version 3

// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File, FileNotFoundExcept ion
import java.util.*; // for Scanner

public class Echo3 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat")) ;
double sum = 0.0;
while (input.hasNext()) {

if (input.hasNextDouble()) {
double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

} else {
input.next(); // consume / throw away bad token

}
}
System.out.println("Sum = " + sum);

}
}

20

Exercise

� Write a program that accepts an input file containing integers representing daily
high temperatures.

Example input file:
42 45 37 49 38 50 46 48 48 30 45 42 45 40 48

� Your program should print the difference between each adjacent pair of
temperatures, such as the following:
Temperature changed by 3 deg F
Temperature changed by -8 deg F
Temperature changed by 12 deg F
Temperature changed by -11 deg F
Temperature changed by 12 deg F
Temperature changed by -4 deg F
Temperature changed by 2 deg F
Temperature changed by 0 deg F
Temperature changed by -18 deg F
Temperature changed by 15 deg F
Temperature changed by -3 deg F
Temperature changed by 3 deg F
Temperature changed by -5 deg F
Temperature changed by 8 deg F

21

Solution

import java.io.*;
import java.util.*;

public class Temperatures {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("weather.dat")) ;
int temp1 = input.nextInt();

while (input.hasNextInt()) {
int temp2 = input.nextInt();
System.out.println("Temperature changed by " +

(temp2 - temp1) + " deg F");
temp1 = temp2;

}
}

}

22

Line-based processing

Readings: 6.3

23

Line-based processing

� The Scanner has the following methods:

whether any more lines remainhasNextLine()

returns the entire next line of inputnextLine()

DescriptionMethod Name

24

Who's next in line?

� Reading a file line-by-line, general syntax:

Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine() ;

<process this line>;

}

� The nextLine method returns the characters from
the input cursor's current position to the nearest \n
character.

5

25

Reading between the newlines

23 3.14 John Smith "Hello world"
45.2 19

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
^

� input.nextLine()
23\t3.14 John Smith\t"Hello world" \n\t\t45.2 19\n

^

� input.nextLine()
23\t3.14 John Smith\t"Hello world"\n \t\t45.2 19 \n

^

� NB: The \n character is consumed but not returned.

26

Exercise

� Write a program that reads a text file and "quotes" it by putting a > in
front of each line.

Input:

Hey,

My students think I stink. What deodorant should I
use?

Sincerely,
Marty Stepp

Output:

> Hey,
>
> My students think I stink. What deodorant should I
> use?
>
> Sincerely,
> Marty Stepp

27

Solution

import java.io.*;
import java.util.*;

public class QuoteMessage {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("message.txt")) ;
while (input.hasNextLine()) {

String line = input.nextLine();
System.out.println(">" + line);

}
}

}

28

Example

� Example file contents:

123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jennifer 8.0 8.0 8.0 8.0 7.5

� Consider the task of computing the total hours worked
for each person represented in the above file.

Susan (ID#123) worked 31.4 hours (7.85 hours/day)
Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jennifer (ID#789) worked 39.5 hours (7.9 hours/day)

29

Line-based or token-based?

� Neither line-based nor token-based processing
works.

� The better solution is a hybrid approach
� Break the input into lines.
� Break each line into tokens.

30

Scanner s on String s

� A Scanner can be constructed to tokenize a particular
String (such as one line of an input file).

Scanner <name> = new Scanner(<String>);

� Example:
String text = "1.4 3.2 hello 9 27.5";

Scanner scan = new Scanner(text); // five tokens

6

31

Tokenizing lines

Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

<process this line>;

}

32

Exercise

� Write a program that computes the total hours worked and
average hours per day for a particular person represented in
the following file:

123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jennifer 8.0 8.0 8.0 8.0 7.5 7.0

Sample runs:
(run #1)
Enter a name: Brad
Brad (ID#456) worked 36.8 hours (7.36 hours/day)

(run #2)
Enter a name: Harvey
Harvey was not found

33

Searching for a line

� When going through the file, how do we know which
line to process?

� If we are looking for a particular line, often we look for
the token(s) of interest on each line.
� If we find the right value, we process the rest of the line.
� e.g. If the second token on the line is "Brad", process it.

34

Solution

// This program searches an input file of employees ' hours worked
// for a particular employee and outputs that emplo yee's hours data.

import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args) throws FileN otFoundException {

String searchName = getSearchName();
String line = getEmployeeData(searchName);
if (line.length() > 0) {

processLine(line);
} else {

System.out.println(searchName + " was not found");
}

}

public static String getSearchName() {
Scanner console = new Scanner(System.in);
System.out.print("Enter a name: ");
return console.next(); // e.g. "BRAD"

}

35

Solution

public static String getEmployeeData(String searchNa me)
throws FileNotFoundException {
Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
lineScan.nextInt(); // e.g. 456 (no need to save)
String name = lineScan.next(); // e.g. "Brad "
if (name.equalsIgnoreCase(searchName)) {

return line;
}

}

return ""; // search name not found
}

...

36

Solution

// totals the hours worked by one person and output s their info
public static void processLine(String line) {

Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Brad "

double sum = 0.0;
int count = 0;
while (lineScan.hasNextDouble()) {

sum += lineScan.nextDouble();
count++;

}

double average = round2(sum / count);
System.out.println(name + " (ID#" + id + ") worked " +

round2(sum) + " hours (" + average + " hours/day)") ;
}

// returns the given double value rounded to the ne arest hundredth.
public static double round2(double number) {

return Math.round(number * 100.0) / 100.0;
}

}

7

37

Exercise

� Write a program that reads in a file containing HTML
text, but with the tags missing their < and >
brackets.
� Whenever you see any all-uppercase token in the file,

surround it with < and > before you print it to the console.
� You must retain the original orientation/spacing of the

tokens on each line.

38

Exercise: Example input

Output to console:
<HTML>
<HEAD>
<TITLE> My web page </TITLE>
</HEAD>
<BODY>
<P> There are pics of my cat here,
as well as my cool blog,
which contains <I> awesome </I>
stuff about my trip to Vegas.
</BODY> </HTML>

Input file:
HTML
HEAD
TITLE My web page /TITLE
/HEAD
BODY
P There are pics of my cat here,
as well as my B cool /B blog,
which contains I awesome /I
stuff about my trip to Vegas.
/BODY /HTML

39

Solution

import java.io.*;
import java.util.*;

public class WebPage {
public static void main(String[] args) throws FileN otFoundException {

Scanner input = new Scanner(new File("page.html"));
while (input.hasNextLine()) {

processLine(input.nextLine());
}

}

public static void processLine(String line) {
Scanner lineScan = new Scanner(line);
while (lineScan.hasNext()) {

String token = lineScan.next();
if (token.equals(token.toUpperCase())) {

// this is an HTML tag
System.out.print("<" + token + "> ");

} else {
System.out.print(token + " ");

}
}
System.out.println();

}
}

40

23 3.14
Joe "Hello world“

45.2 19

� console.nextInt(); // 23
23 \t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

� console.nextDouble(); // 3.14
23\t 3.14 \nJoe\t"Hello world"\n\t\t45.2 19\n

^

� console.nextLine();
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

� console.nextLine(); // "Joe\t\"Hello wo rld\"“
23\t3.14\n Joe\t"Hello world" \n\t\t45.2 19\n

^

Mixing line-based and token-based methods

23 3.14
Joe "Hello world"

45.2 19

� console.nextInt(); // 23
23 \t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

� console.nextDouble(); // 3.14
23\t 3.14 \nJoe\t"Hello world"\n\t\t45.2 19\n

^

� console.nextLine(); // empty string!!
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

� console.nextLine(); // "Joe\t\"Hello wo rld\"“
23\t3.14\n Joe\t"Hello world" \n\t\t45.2 19\n

^

41

Mixing line-based and token-based methods

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt() ;
System.out.print("Now enter your name: ");
String name = console.nextLine() ;
System.out.println(name + " is " + age + " years old .");

Sample run:
Enter your age: 12
Now enter your name: Marty Stepp

is 12 years old.

� Why?
� Overall input: 12\nMarty Stepp\n
� After nextInt() : 12 \nMarty Stepp\n

^
� After nextLine() : 12\nMarty Stepp\n

^

42

Exercise: IMDB

� Consider the following Internet Movie Database (IMDB) Top-250 data

1 210,374 9.1 The Godfather (1972)
2 251,376 9.1 The Shawshank Redemption (1994)
3 119,306 8.9 The Godfather: Part II (1974)

� Write a program that prompts the user for a search phrase and displays any
movies that contain that phrase.

This program will allow you to search the
imdb top 250 movies for a particular word.

Search word: part
Rank Votes Rating Title
3 119306 8.9 The Godfather: Part II (1974)
66 93470 8.3 The Departed (2006)
98 17710 8.2 The Apartment (1960)
179 26626 7.9 Spartacus (1960)
4 matches.

8

43

Solution: IMDB

// This program reads a file of IMDB's Top 250 movie s and
// displays information about movies that match a s earch
// string typed by the user.

import java.io.*;
import java.util.*;

public class Movies {
public static void main(String[] args) throws FileN otFoundException {

introduction();
String phrase = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
search(input, phrase);

}

// Prints introductory text to the user
public static void introduction() {

System.out.println("This program will allow you to s earch the");
System.out.println("imdb top 250 movies for a partic ular word.");
System.out.println();

}

// Asks the user for their search phrase and return s it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String phrase = console.next();
return phrase.toLowerCase();

}

44

Solution: IMDB

// Breaks apart each line, looking for lines that m atch the search phrase.
// Prints information about each movie that matches the phrase.
//
// example line: "2 251,376 9.1 The Shawshank Redemp tion (1994)"
public static void search(Scanner input, String phra se) {

System.out.println("Rank\tVotes\tRating\tTitle");

int matches = 0;
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);

int rank = lineScan.nextInt();
int votes = lineScan.nextInt();
double rating = lineScan.nextDouble();
String title = lineScan.nextLine(); // all the res t
String lcTitle = title.toLowerCase();

if (lcTitle.indexOf(phrase) >= 0) {
matches++;
System.out.println(rank + "\t" + votes + "\t" + rati ng + title);

}
}
System.out.println(matches + " matches.");

}
}

45

Exercise: Graphical IMDB

� Consider making this a
graphical program.

� Expected appearance:
� top-left tick mark at (20, 20)

� ticks 10px tall, 50px apart
� first red bar top-left at (20, 70)

� 100px apart vertically
� 1px tall per 5000 votes
� 50px wide per rating point

46

Mixing graphical and text output

� First, tackle the text and file input/output
1. Write code to open the input file and print some of the

file's data to make sure you're reading the file properly.
2. Process the input file and retrieve the record being

searched for.
3. Produce the complete and exact text output.

� Then, do the graphical output
1. Draw any fixed items that do not depend on the user

input or file results.
2. Draw the graphical output that depends on the search

record from the file.

47

Solution: Graphical IMDB

// This program reads a file of IMDB's Top 250 movie s and
// displays information about movies that match a s earch
// string typed by the user.

import java.awt.*;
import java.io.*;
import java.util.*;

public class Movies2 {
public static void main(String[] args) throws FileN otFoundException {

introduction();
String phrase = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
search(input, phrase);

}

// Prints introductory text to the user
public static void introduction() {

System.out.println("This program will allow you to s earch the");
System.out.println("imdb top 250 movies for a partic ular word.");
System.out.println();

}

// Asks the user for their search phrase and return s it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String phrase = console.next();
return phrase.toLowerCase();

}

48

Solution: Graphical IMDB

// Breaks apart each line, looking for lines that m atch the search phrase.
// Prints information about each movie that matches the phrase.
//
// example line: "2 251,376 9.1 The Shawshank Redemp tion (1994)"
public static void search(Scanner input, String phra se) {

Graphics g = createWindow();
System.out.println("Rank\tVotes\tRating\tTitle");

int matches = 0;
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);

int rank = lineScan.nextInt();
int votes = lineScan.nextInt();
double rating = lineScan.nextDouble();
String title = lineScan.nextLine(); // all the res t
String lcTitle = title.toLowerCase();

if (lcTitle.indexOf(phrase) >= 0) {
matches++;
System.out.println(rank + "\t" + votes + "\t" + rati ng + title);
drawBar(g, line, matches);

}
}
System.out.println(matches + " matches.");

}

9

49

Solution: Graphical IMDB

// Creates a drawing panel and draws all fixed grap hics
// (graphics unaffected by the file search results)
public static Graphics createWindow() {

DrawingPanel panel = new DrawingPanel(600, 500);
Graphics g = panel.getGraphics();

// draw tick marks
for (int i = 0; i <= 10; i++) {

// first tick mark's top-left corner is at (20, 20)
// 10px tall, 50px apart
int x = 20 + i * 50;
g.drawLine(x, 20, x, 30);
g.drawString(i + ".0", x, 20);

}

return g;
}

50

Solution: Graphical IMDB

// Draws one red bar representing a movie's votes a nd ranking.
// The "matches" parameter determines the bar's y p osition.
public static void drawBar(Graphics g, String line, int matches) {

Scanner lineScan = new Scanner(line);
int rank = lineScan.nextInt();
int votes = lineScan.nextInt();
double rating = lineScan.nextDouble();
String title = lineScan.nextLine(); // all the res t

// draw the red bar for that movie
// first bar's top-left corner is at (20, 70)
// 100px apart vertically
// 1px tall for every 5000 votes earned
// 50px wide for each ratings point
int x = 20;
int y = 70 + 100 * (matches - 1);
int w = (int) (rating * 50);
int h = votes / 5000;

g.setColor(Color.RED);
g.fillRect(x, y, w, h);

g.setColor(Color.BLACK);
g.drawString("#" + rank + ": " + title, x, y);
g.drawString(votes + " votes", x + w, y);

}
}

51

Multi-line records

� The following data represents students' course information.

Erica Kane
3 2.8 4 3.9 3 3.1
Greenlee Smythe
3 3.9 3 4.0 4 3.9
Ryan Laveree, Jr.
2 4.0 3 3.6 4 3.8 1 2.8

Each student's record has the following format:
� Name
� Credits Grade Credits Grade Credits Grade ...

� How can we process one or all of these records?

52

File output

Readings: 6.4 (pg. 355 – 359)

53

Outputting to files

� PrintStream : A class in the java.io package that
lets you print output to a destination such as a file.

� System.out is a PrintStream object!
� Any methods you have used on System.out (such as

print , println) will work on every PrintStream

object.

54

Setting up the PrintStream

� Setting up an output file, general syntax:
PrintStream <name> =

new PrintStream(new File(" <file name>"));

� Example:
PrintStream output = new PrintStream(new File("output .txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

10

55

PrintStream properties

� Caution: Do not open a file for reading (Scanner)
and writing (PrintStream) at the same time.
� You could overwrite your input file by accident!

56

Exercise

� Write a method named copy that takes two
filenames and copies the contents from the first file
into the second file.

57

Solution

public static void copy(String name1, String name2)

throws FileNotFoundException {
Scanner input = new Scanner(new File(name1));
PrintStream output = new PrintStream(new File(name2)) ;

while (input.hasNextLine()) {

output.println(input.nextLine());

}

}

