
1

1

Classes and objects

Readings: 8.1

2

Recall: Objects and classes

� object: An entity that contains data and behavior.
We group objects into classes.

� class:
� Basic building block of Java programs

or
� Category or type of object

� Classes we have seen so far: String , Point ,
Scanner , DrawingPanel , Graphics , Color ,
Random, File , PrintStream

3

Big idea: Abstraction

� abstraction: A distancing between ideas and details.
� How do objects provide a level of abstraction?

� You use abstraction every day!
� Do YOU know how your iPod works?

?
? ??
?

4

Classes are like blueprints

Music player #1

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #2

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player #3

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

Music player blueprint

state:
station/song,
volume, battery life

behavior:
power on/off
change station/song
change volume
choose random song

5

Recall: Point object

� Constructing a Point object, general syntax:
Point <name> = new Point(<x>, <y>);

Point <name> = new Point(); // the origin, (0, 0)

� Examples:
Point p1 = new Point(5, -2);

Point p2 = new Point();

6

Recall: Point object

� Data stored in each Point object:

� Useful methods in each Point object:

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

how far away the point is from point pdistance(p)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

2

7

Point class

Point class

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #1

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #2

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

Point object #3

state:
int x, y

behavior:
distance(Point p)
equals(Point p)
setLocation(int x, int y)
toString()
translate(int dx, int dy)

8

Object state: fields

Readings: 8.2

9

Point class: Version 1

public class Point {
int x;
int y;

}

� Every object of type Point contains two integers.

� Point objects (so far) do not contain any behavior.

� Class declarations are saved in a file of the same
name: Point.java

10

Fields

� field: A variable inside an object that represents part of its
internal state.
� Each object will have its own copy of the data fields we declare.

� Declaring a field, general syntax:
<type> <name>;
or
<type> <name> = <value>; (with initialization)

� Example:
public class Student {

String name; // each student object has a
double gpa; // name and gpa data field

}

11

Accessing and modifying fields

� Accessing a data field, general syntax:
<variable name>. <field name>

� Modifying a data field, general syntax:
<variable name>. <field name> = <value>;

� Example:
System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

12

Client code

� The Point class is not an executable Java
program. Why not?
� It does not contain a main method.

� client program: Code that uses an object.

3

13

Client program: Version 1

public class PointMain {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.x = 5;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.x += 2;
p2.y += 4;
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

Output:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

14

Exercise

� Write a client program to produce the following
output:

p1 is (7, 2)

p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)

p2 is (5, 10)

� Recall the formula to compute the distance between
points (x1, y1) and (x2, y2) is: () ()2

12
2

12 yyxx −+−

15

Solution

public class PointProgram {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.x = 7;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
double dist1 = Math.sqrt(p1.x * p1.x + p1.y * p1.y) ;
System.out.println("p1's distance from origin = " + dist1);

System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");
double dist2 = Math.sqrt(p2.x * p2.x + p2.y * p2.y) ;
System.out.println("p2's distance from origin = " + dist2);

// move points and then print again
p1.x += 11;
p1.y += 6;
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
p2.x += 1;
p2.y += 7;
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

16

Object behavior: methods

Readings: 8.3

17

The case for methods

� How would we translate several points?

p1.x += 11;
p1.y += 6;

p2.x += 2;
p2.y += 4;

p3.x += 1;
p3.y += 7;

� What is unsettling about this code?

18

Attempt at eliminating redundancy

� Write a static method in the client code to translate
points.

// Shifts the location of the given point.
public static void translate(Point p, int dx, int dy) {

p.x += dx;
p.y += dy;

}

� Example:
// move p2 and then print it again
translate(p2, 2, 4);

� Question: Why doesn't the method need to return the
modified point?

4

19

Why is the static method solution bad?

� The call syntax doesn't match the way we're used to
interacting with objects:

translate(p2, 2, 4);

We want something more like:

p2.translate(2, 4);

� Every client code that wants to translate points would
have to write their own static translate method.

20

Classes with behavior

� The whole point of writing classes is to put related
state and behavior together.

� Point translation is closely related to the x/y data of
the Point object, so it belongs in the Point class.

21

Instance methods

� instance method: A method inside an object that
operates on that object.

� Declaring an object's method, general syntax:
public <type> <name> (<parameter(s)>) {

<statement(s)>;

}

� How does this differ from previous methods?

22

Instance methods

� An object's instance methods can refer to its fields.

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

� How does the translate method know which x
and which y to modify?

23

The implicit parameter

� Each instance method call happens on a particular
object.
� Example: p1.translate(11, 6);

� The code for an instance method has an implied
knowledge of what object it is operating on.

� implicit parameter: The object on which an
instance method is called.

24

Point object diagrams

� Think of each Point object as having its own copy of the
translate method, which operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1:
public void translate(int dx, int dy) {

...
}

y:x: 7 2

p2:
public void translate(int dx, int dy) {

...
}

y:x: 4 3

5

25

Tracing instance method calls

� What happens when the following calls are made?
p1.translate(11, 6);

p2.translate(1, 7);

p1:
public void translate(int dx, int dy) {

x += dx;
y += dy;

}

y:x: 3 8

p2:
public void translate(int dx, int dy) {

x += dx;
y += dy;

}

y:x: 4 3

14 14

5 10

26

Point class: Version 2

public class Point {

int x;

int y;

// Changes the location of this Point object.

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

27

Client program: Version 2

public class PointMain2 {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.x = 5;
p1.y = 2;
Point p2 = new Point();
p2.x = 4;
p2.y = 3;

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

Output:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

28

Errors in coding

� Why won’t the following work in the client code?
translate(2, 4);

PointMain2.java:16: cannot find symbol

symbol : method translate(int,int)

location: class PointMain2

translate(2, 4);

^

1 error

� In the client code, instance methods need to be called on an
object, otherwise it is unknown what the translate method is
(i.e. “cannot find symbol”), because it’s not declared in the client
code.

29

Exercises

� Write an instance method named distanceFromOrigin that
computes and returns the distance between the current Point
object and the origin, (0, 0).

� Write an instance method named distance that accepts a
Point and computes the distance between it and the current
Point .

� Write an instance method named setLocation that accepts x
and y values and changes the Point 's location to be those
values.

� Modify the client code to use these new methods as
appropriate.

30

Solutions

public class Point {
int x;
int y;

// Changes the location of this Point object.
public void translate(int dx, int dy) {

setLocation(x + dx, y + dy);
}

// Returns the distance from this Point object to t he origin
public double distanceFromOrigin() {

return Math.sqrt(x * x + y * y);
}

// Returns the distance from this Point object to t he given point
public double distance(Point other) {

int dx = x - other.x;
int dy = y - other.y;
return Math.sqrt(dx * dx + dy * dy);

}

// Sets this Point object's location
public void setLocation(int newX, int newY) {

x = newX;
y = newY;

}
}

6

31

Exercise

� Recall our client program that produces this output:
p1 is (7, 2)
p1's distance from origin = 7.280109889280518
p2 is (4, 3)
p2's distance from origin = 5.0
p1 is (18, 8)
p2 is (5, 10)

� Modify the program to use our new instance
methods.

� Also add the following output to the program:
distance from p1 to p2 = 13.152946437965905

32

Solution

public class PointProgram {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point();
p1.setLocation(7, 2);

Point p2 = new Point();
p2.setLocation(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p1's distance from origin = " + p1.distanceFromOrigin());

System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");
System.out.println("p2's distance from origin = " + p2.distanceFromOrigin());

// move points and then print again
p1.translate(11, 6);
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
p2.translate(1, 7);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

System.out.println("distance from p1 to p2 = " + p1. distance(p2));
}

}

33

� What is the significance of the static keyword?

� Is sqrt in the Math class static? Why or why not?

� Is nextInt in the Scanner class static? Why or
why not?

� What is the significance of the static keyword?
instance method = NOT declared static

� Is sqrt in the Math class static? Why or why not?
Yes, because no object is needed to use sqrt .

� Is nextInt in the Scanner class static? Why or
why not?

No, because you need a Scanner object to use
nextInt .

Test your understanding

34

Object initialization:

constructors

Readings: 8.4

35

Initializing objects

� It is tedious to have to construct an object and
assign values to all of its data fields manually.

Point p = new Point();
p.x = 3;
p.y = 8; // tedious

� We want something more like:

Point p = new Point(3, 8); // better!

36

Constructor

� constructor: A special method that initializes the
state of new objects as they are created.

� Constructor syntax:
public <class name> (<parameter(s)>) {

<statement(s)>;
}

� How does this differ from previous methods?

7

37

Point class: Version 3

public class Point {
int x;
int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

// Changes the location of this Point object.
public void translate(int dx, int dy) {

x += dx;
y += dy;

}
}

38

Tracing constructor calls

� What happens when the following call is made?
Point p1 = new Point(7, 2);

p1:
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

y:x: 7 2

39

Uh oh!

� Our client code doesn’t work anymore!

PointMain2.java:4: cannot find symbol
symbol : constructor Point()
location: class Point

Point p1 = new Point();
^

PointMain2.java:7: cannot find symbol
symbol : constructor Point()
location: class Point

Point p2 = new Point();
^

� Why did it work before?

� If a class has no explicit constructor, Java gives it a default
constructor with no parameters that sets all the object's fields to
zero-equivalent values.

40

Client program: Version 3

public class PointMain3 {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

Output:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

41

Exercise

� Recall our client program that produces this output:
p1 is (7, 2)

p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)

p2 is (5, 10)

distance from p1 to p2 = 13.152946437965905

� Modify the program to use our new constructor.

42

Solution

public class PointProgram {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p1's distance from origin = " + p1.distanceFromOrigin());

System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");
System.out.println("p2's distance from origin = " + p2.distanceFromOrigin());

// move points and then print again
p1.translate(11, 6);
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
p2.translate(1, 7);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

System.out.println("distance from p1 to p2 = " + p1. distance(p2));
}

}

8

43

The keyword this

Readings: 8.7 (pg. 469 – 471)

44

Point class constructor

� What happens if the constructor has the following
header?

public Point(int x, int y)

45

Variable shadowing

� shadowed variable: A field that is "covered up" by a local
variable or parameter with the same name.

� Normally, it is illegal to have two variables in the same
scope with the same name, but in this case (fields and local
variables) it is allowed. Why?

� Otherwise, to avoid shadowing, we would always have to
give the parameters different names:

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

46

Using the keyword this

� The this keyword is a reference to the implicit
parameter (the object on which an instance method
is being called).

� Usage of the this keyword, general syntax:
� To refer to a field:

this. <field name>

� To refer to a method:
this. <method name>(<parameters>);

47

It's like this and like that and like this and...

� The this keyword lets us use the same names and
avoid shadowing:

public Point(int x, int y) {
this.x = x;
this.y = y;

}

� When this. is present, the field is used.
� When this. is not present, the parameter is used.

48

Encapsulation

Readings: 8.5 (pg. 453 – 457)

9

49

Encapsulation

� encapsulation: Hiding the implementation details of an
object from the clients of the object.

� Encapsulating objects provides abstraction, because we
can use them without knowing how they work.

?
? ??
?

50

Implementing encapsulation

� Fields can be declared private to indicate that no
code outside their own class can change them.

� Declaring a private field, general syntax:
private <type> <name>;

� Examples:
private int x;

private String name;

51

Private fields

� Once fields are private, client code cannot directly
access them. The client receives an error such as:

PointMain3.java:8: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

� How can the client program see what x is?

52

Accessors

� accessor: An instance method that provides
information about the state of an object.

� Example:
public int getX() {

return x;
}

� This gives clients "read-only" access to the object's
fields.

53

Mutators

� mutator: An instance method that modifies the
object’s internal state.

� Example:
public void setX(int newX) {

x = newX;
}

54

Benefits of encapsulation

� Provides a clean layer of abstraction between an object and
its clients.

� Protects an object from unwanted access by clients.
� Would you like any program to be able to modify the

BankAccount object with your account information?

� Allows the class author to change the internal representation
later if necessary.
� Example: Changing the Point class to use polar

coordinates (a radius r and an angle θ from the origin)

10

55

Point class: Version 4

public class Point {
private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

// Changes the location of this Point object.
public void translate(int dx, int dy) {

x += dx;
y += dy;

}
}

56

Client program: Version 4

public class PointMain4 {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")");

}
}

57

toString or not toString

Readings: 8.6 (pg. 460 – 462)

58

Latest version of client code

public class PointMain4 {
public static void main(String[] args) {

// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.getX() + ", " + p 1.getY() + ")");
System.out.println("p2 is (" + p2.getX() + ", " + p 2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.getX() + ", " + p 2.getY() + ")");

}
}

� Any remaining redundancies?

59

Printing points

� Instead of

System.out.println("p1 is (" + p1.getX() + ", " + p 1.getY() + ")");

� It would be nice to have something more like:

System.out.println("p1 is " + p1);

� What does this line currently do? Does it even compile?

It will print: p1 is Point@9e8c34

60

toString

� When an object is printed or concatenated with a
String , Java calls the object's toString method.

System.out.println("p1 is " + p1);

is equivalent to:

System.out.println("p1 is " + p1.toString());

� Note: Every class has a toString method.

11

61

toString

� The default toString behavior is to return the
class's name followed by gibberish (as far as you
are concerned).

� You can replace the default behavior by defining a
toString method in your class.

62

toString method syntax

� The toString method, general syntax:
public String toString() {

<statement(s) that return a String>;
}

� NB: The method must have this exact name and
signature (i.e., public String toString()).

� Example:
// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

63

Object state

64

The Parent class

public class Parent {
private int count;

public Parent() {
count = 0;

}

public String areWeThereYet() {
count++;
if (count >= 7) {

return "NO!!!! Now sit down and shut up, you ungra teful little brat!";
} else if (count % 2 == 0) {

return "We'll be there soon";
} else {

return "We're almost there";
}

}
}

65

The Parent class: Version 2

public class Parent {
private int count;
private int threshold;

public Parent(int threshold) {
count = 0;
this.threshold = threshold;

}

public String areWeThereYet() {
count++;
if (count >= threshold) {

return "NO!!!! Now sit down and shut up, you ungra teful little brat!";
} else if (count % 2 == 0) {

return "We'll be there soon";
} else {

return "We're almost there";
}

}
}

66

Exercise

� Write a class Remote that implements a TV remote
control with a “jump” button. The remote keeps
track of the TV channel. When the user presses
“jump”, the channel is set to the previous channel.

The remote should have the following methods:
� up() : sets the channel to be the next one up
� down() : sets the channel to be the next one down
� setChannel(int) : sets the channel to an arbitrary channel

� jump() : sets the channel to the previous channel

12

67

Solution

public class Remote {
private int channel;
private int previousChannel;

public Remote() {
channel = 2;
previousChannel = 2;

}

public void up() {
setChannel(channel + 1);

}

public void down() {
setChannel(channel – 1);

}

public void jump() {
setChannel(previousChannel);

}

...

public void setChannel(int num) {
previousChannel = channel;
channel = num;
printChannel();

}

public void printChannel() {
System.out.println("The channel is "

+ channel);
}

}

