
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 7

Lecture 7-2: Tallying and Traversing Arrays

reading: 7.1

self-checks: #1-9

videos: Ch. 7 #4

Copyright 2008 by Pearson Education
2

A multi-counter problem
 Problem: Examine a large integer and count the number

of occurrences of every digit from 0 through 9.

 Example: The number 229231007 contains:

two 0s, one 1, three 2s, one 7, and one 9.

 We could declare 10 counter variables for this...
int counter0, counter1, counter2, counter3, counter4,

counter5, counter6, counter7, counter8, counter9;

 Yuck!

Copyright 2008 by Pearson Education
3

A multi-counter problem
 A better solution is to use an array of size 10.

 The element at index i will store the counter for digit value i.

 for integer value 229231007, our array should store:

 The index at which a value is stored has meaning.

 Sometimes it doesn't matter.

 What about the weather case?

index 0 1 2 3 4 5 6 7 8 9

value 2 1 3 0 0 0 0 1 0 1

Copyright 2008 by Pearson Education
4

Creating an array of tallies

int num = 229231007;

int[] counts = new int[10];

while (num > 0) {

// pluck off a digit and add to proper counter

int digit = num % 10;

counts[digit]++;

num = num / 10;

}

index 0 1 2 3 4 5 6 7 8 9

value 2 1 3 0 0 0 0 1 0 1

Copyright 2008 by Pearson Education
5

Array histogram question
 Given a file of integer exam scores, such as:

82

66

79

63

83

Write a program that will print a histogram of stars indicating
the number of students who earned each unique exam score.

85: *****

86: ************

87: ***

88: *

91: ****

Copyright 2008 by Pearson Education
6

Array histogram answer
// Reads an input file of test scores (integers) and displays a

// text histogram of the score distribution.

import java.io.*;

import java.util.*;

public class Histogram {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("scores.txt"));

int[] counts = new int[101]; // counters of test scores 0 - 100

while (input.hasNextInt()) { // read file into counts array

int score = input.nextInt();

counts[score]++; // if score is 87, then counts[87]++

}

for (int i = 0; i < counts.length; i++) { // print star histogram

if (counts[i] > 0) {

System.out.print(i + ": ");

for (int j = 0; j < counts[i]; j++) {

System.out.print("*");

}

System.out.println();

}

}

}

}

Copyright 2008 by Pearson Education

Array traversals,
text processing

reading: 7.1, 4.4

self-check: Ch. 7 #8, Ch. 4 #19-23

Copyright 2008 by Pearson Education
8

Array traversals
 traversal: An examination of each element of an array.

for (int i = 0; i < array.length; i++) {

do something with array[i];

}

 Examples:

 printing the elements

 searching for a specific value

 rearranging the elements

 computing the sum, product, etc.

Copyright 2008 by Pearson Education
9

Quick array initialization
type[] name = {value, value, … value};

 Example:

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

 Useful when you know what the array's elements will be

 The compiler figures out the size by counting the values

index 0 1 2 3 4 5 6

value 12 49 -2 26 5 17 -6

Copyright 2008 by Pearson Education
10

Mini-exercise
 Improve the following code (it can be replaced by 1 line):

int[] ns = new int[4];

ns[1] = 10;

ns[2] = 25;

ns[3] = 50;

(This is slightly a trick question. But only slightly.)

Copyright 2008 by Pearson Education
11

Mini-exercise - solution
 Improve the following code (it can be replaced by 1 line):

int[] ns = new int[4];

ns[1] = 10;

ns[2] = 25;

ns[3] = 50;

// new code:
int[] ns = {0, 10, 25, 50};

Copyright 2008 by Pearson Education
12

"Array mystery" problem
 What element values are stored in the following array?

int[] a = {1, 7, 5, 6, 4, 14, 11};

for (int i = 0; i < a.length - 1; i++) {

if (a[i] > a[i + 1]) {

a[i + 1] = a[i + 1] * 2;

}

}

index 0 1 2 3 4 5 6

value

index 0 1 2 3 4 5 6

value 1 7 10 12 8 14 22

Copyright 2008 by Pearson Education
13

Text processing
 text processing: Examining, editing, formatting text.

 Often involves for loops to examine each letter of a String.

 Count the number of times the letter 's' occurs in a file.

 Find which letter is most common in a file.

 Count A, C, T and Gs in Strings representing DNA strands.

 Strings are represented internally as arrays of char.

String str = "Ali G.";

index 0 1 2 3 4 5

value 'A' 'l' 'i' ' ' 'G' '.'

Copyright 2008 by Pearson Education
14

Recall: type char

 char: A primitive type representing a single character.

 Values are surrounded with apostrophes: 'a' or '4' or '\n'

 Access a string's characters with its charAt method.

String word = console.next();

char firstLetter = word.charAt(0);

if (firstLetter == 'c') {

System.out.println("That's good enough for me!");

}

 Use for loops to examine each character.

String coolMajor = "CSE";

for (int i = 0; i < coolMajor.length(); i++) {

System.out.println(coolMajor.charAt(i));

}

Copyright 2008 by Pearson Education
15

Text processing question
 Write a method tallyVotes that accepts a String

parameter and prints the number of McCain, Obama and
independent voters.

// (M)cCain, (O)bama, (I)ndependent

String voteText = "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO";

tallyVotes(voteText);

 Output:

Votes: [16, 14, 3]

Copyright 2008 by Pearson Education
16

Arrays.toString

 Arrays.toString accepts an array as a parameter and
returns a String representation of its elements.

int[] e = {0, 2, 4, 6, 8};

e[1] = e[3] + e[4];

System.out.println("e is " + Arrays.toString(e));

Output:

e is [0, 14, 4, 6, 8]

 Must import java.util.*;

Copyright 2008 by Pearson Education
17

Text processing answer
public static int[] tallyVotes(String votes) {

int[] tallies = new int[3]; // M -> 0, O -> 1, I -> 2

for(int i = 0; i < votes.length(); i++) {

if(votes.charAt(i) == 'M') {

tallies[0]++;

} else if(votes.charAt(i) == 'O') {

tallies[1]++;

} else { // votes.charAt(i) == 'I'

tallies[2]++;

}

}

System.out.println("Votes: " + Arrays.toString(tally));;

}

Copyright 2008 by Pearson Education
18

The Arrays class

 Class Arrays in package java.util has useful static

methods for manipulating arrays:

Method name Description

binarySearch(array, value) returns the index of the given value
in a sorted array (< 0 if not found)

equals(array1, array2) returns true if the two arrays

contain the same elements in the
same order

fill(array, value) sets every element in the array to
have the given value

sort(array) arranges the elements in the array
into ascending order

toString(array) returns a string representing the
array, such as "[10, 30, 17]"

Copyright 2008 by Pearson Education
19

Arrays as parameters
 [Section 7.1 of the text]

 Declaration:
public static type methodName(type[] name) {

 Example:

public static double average(int[] numbers) {

 Call:
methodName(arrayName);

 Example:

int[] scores = {13, 17, 12, 15, 11};

double avg = average(scores);

Copyright 2008 by Pearson Education
20

Array parameter example
public static void main(String[] args) {

int[] iq = {126, 84, 149, 167, 95};

double avg = average(iq);

System.out.println("Average = " + avg);

}

public static double average(int[] array) {

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum += array[i];

}

return (double) sum / array.length;

}

Output:
Average = 124.2

Copyright 2008 by Pearson Education
21

Mini-exercise
Modify the ‘average’ method to find the max element

instead (assume the array is non-empty)

public static void main(String[] args) {

int[] iq = {126, 84, 149, 167, 95};

double avg = average(iq);

System.out.println("Average = " + avg);

}

public static double average(int[] array) {

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum += array[i];

}

return (double) sum / array.length;

}

Copyright 2008 by Pearson Education
22

Mini-exercise - answer

public static void main(String[] args) {

int[] iq = {126, 84, 149, 167, 95};

int m = max(iq);

System.out.println(”max = " + m);

}

public static int max(int[] array) {

int maxSoFar = array[0];

for (int i = 1; i < array.length; i++) {

if (array[i]>maxSoFar) {

maxSoFar = array[i];

}

}

return maxSoFar;

}

Output:
Max = 167

Copyright 2008 by Pearson Education
23

Arrays as return (declaring)

public static type[] methodName(parameters) {

 Example:

public static int[] countDigits(int n) {

int[] counts = new int[10];

while (n > 0) {

int digit = n % 10;

n = n / 10;

counts[digit]++;

}

return counts;

}

Copyright 2008 by Pearson Education
24

Arrays as return (calling)

type[] name = methodName(parameters);

 Example:

public static void main(String[] args) {

int[] tally = countDigits(229231007);

System.out.println(Arrays.toString(tally));

}

Output:

[2, 1, 3, 1, 0, 0, 0, 1, 0, 1]

Copyright 2008 by Pearson Education
25

Section attendance question
 Write a program that reads a data file of section attendance

and produces the following output:

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

• Students earn 3 points for each section attended up to 20.

Copyright 2008 by Pearson Education
26

Section input file
 The input file contains section attendance data:

111111101011111101001110110110110001110010100

111011111010100110101110101010101110101101010

110101011011011011110110101011010111011010101

 Each line represents a section (5 students, 9 weeks).

 1 means the student attended; 0 not.

week1 week2 week3 week4 week5 week6 week7 week8 week9

11111 11010 11111 10100 11101 10110 11000 11100 10100

week2

student1 student2 student3 student4 student5

1 1 0 1 0

Copyright 2008 by Pearson Education
27

Data transformations
 In this problem we go from 0s and 1s to student grades

 This is called transforming the data.

 Often each transformation is stored in its own array.

 We must map between the data and array indexes.

Examples:

 by position (store the i th value we read at index i)

 tally (if input value is i, store it at array index i)

 explicit mapping (count 'M' at index 0, count 'O' at index 1)

Copyright 2008 by Pearson Education
28

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] points, double[] grades) {

System.out.println("Sections attended: " + Arrays.toString(attended));
System.out.println("Sections scores: " + Arrays.toString(points));
System.out.println("Sections grades: " + Arrays.toString(grades));
System.out.println();

}

...

Copyright 2008 by Pearson Education
29

Array param/return answer
...

// Counts the sections attended by each student for a particular section.
public static int[] countAttended(String line) {

int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

char c = line.charAt(i);
// c == '1' or c == '0'
if (c == '1') {

// student attended their section
attended[i % 5]++;

}
}
return attended;

}

// Computes the points earned for each student for a particular section.
public static int[] computePoints(int[] attended) {

int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
return points;

}

// Computes the percentage for each student for a particular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

