
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 1

Lecture 1-2: Static Methods, Avoiding Redundancy

reading: 1.4 - 1.5

self-check: 16-25

exercises: #5-10

videos: Ch. 1 #1

Copyright 2008 by Pearson Education
2

Today

 A couple odds and ends:

 Print blank lines with System.out.println();

 Comments: why and details

 Methods

 Why

 To provide logical structure

 To avoid redundancy

 How

 Defining methods

 Calling methods

 Idea of control flow

 Program-design practice: drawing figures

Copyright 2008 by Pearson Education
3

Comments
 comment: A note written in source code by the

programmer to describe or clarify the code.

 Not executed when your program runs.

 Syntax:

// comment text, on one line

or,
/* comment text; may span multiple lines */

 Examples:
// This is a one-line comment.

/* This is a

two-line comment. */

Copyright 2008 by Pearson Education
4

Using comments

 Where to place comments:

 at the top of each file (a "comment header")

 at the start of every method (seen later)

 to explain complex pieces of code

 Comments are useful for:

 Understanding larger, more complex programs.

 Multiple programmers working together, who must understand

each other's code.

Copyright 2008 by Pearson Education
5

Comments example
/* Suzy Student, CSE142, Spring 2009

This program prints lyrics about ... something. */

public class BaWitDaBa {

public static void main(String[] args) {

// first verse

System.out.println("Bawitdaba");

System.out.println("da bang a dang diggy diggy");

System.out.println();

// second verse

System.out.println("diggy said the boogy");

System.out.println("said up jump the boogy");

}

}

Copyright 2008 by Pearson Education
6

Algorithms
 algorithm: Exact description for how to produce an

answer.

 Example algorithm: “How to make sugar cookies"

 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

 Set the oven temperature.

 Set the timer.

 Put the cookies in the oven.

 Allow the cookies to bake.

 Spread frosting and sprinkles onto the cookies.

 ...

Copyright 2008 by Pearson Education
7

Java version
// This program prints a sugar-cookie recipe

public class BakeCookies {

public static void main(String[] args) {

System.out.println("Mix the dry ingredients.");

System.out.println("Cream the butter and sugar.");

System.out.println("Beat in the eggs.");

System.out.println("Stir in the dry ingredients.");

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

System.out.println("Mix ingredients for frosting.");

System.out.println("Spread frosting and sprinkles.");

}

}

Copyright 2008 by Pearson Education
8

First problem
 Our cookie algorithm (in text or Java) is unstructured

 Lots of small steps not grouped into understandable parts

 structured algorithm: Split into coherent tasks.
1 Make the cookie batter.

 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

2 Bake the cookies.

 Set the oven temperature.

 Set the timer.

 Place the cookies into the oven.

 Allow the cookies to bake.

3 Add frosting and sprinkles.

 Mix the ingredients for the frosting.

 Spread frosting and sprinkles onto the cookies.

...

Copyright 2008 by Pearson Education
9

Structured algorithms
 structured algorithm: Split into coherent tasks.

1 Making cookie batter

 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

2 Baking cookies

 Set the oven temperature.

 Set the timer.

 Place the cookies into the oven.

 Allow the cookies to bake.

3 Decorating cookies

 Mix the ingredients for the frosting.

 Spread frosting and sprinkles onto the cookies.

...

Copyright 2008 by Pearson Education
10

Second Java version
// This program prints a sugar-cookie recipe

public class BakeCookies {

public static void main(String[] args) {

// Print the part about batter making

System.out.println("Mix the dry ingredients.");

System.out.println("Cream the butter and sugar.");

System.out.println("Beat in the eggs.");

System.out.println("Stir in the dry ingredients.");

// Print the part about baking

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

// Print the part about frosting

System.out.println("Mix ingredients for frosting.");

System.out.println("Spread frosting and sprinkles.");

}

}

Copyright 2008 by Pearson Education
11

Second problem
 Our cookie algorithm doesn’t have reusable parts

 Consider making a double batch...
 Mix the dry ingredients.

 Cream the butter and sugar.

 Beat in the eggs.

 Stir in the dry ingredients.

 Set the oven temperature.

 Set the timer.

 Place the first batch of cookies into the oven.

 Allow the cookies to bake.

 Set the timer.

 Place the second batch of cookies into the oven.

 Allow the cookies to bake.

 Mix ingredients for frosting.

 ...

Copyright 2008 by Pearson Education
12

Java version
// This program prints a sugar-cookie recipe

public class BakeCookies {

public static void main(String[] args) {

System.out.println("Mix the dry ingredients.");

System.out.println("Cream the butter and sugar.");

System.out.println("Beat in the eggs.");

System.out.println("Stir in the dry ingredients.");

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

System.out.println("Set the oven temperature.");

System.out.println("Set the timer.");

System.out.println("Place a batch of cookies into the oven.");

System.out.println("Allow the cookies to bake.");

System.out.println("Mix ingredients for frosting.");

System.out.println("Spread frosting and sprinkles.");

}

}

Copyright 2008 by Pearson Education
13

Removing redundancy
 A well-structured algorithm can describe repeated tasks

with less redundancy.

1 Making cookie batter.

 Mix the dry ingredients.

 ...

2 Baking cookies.

 Set the oven temperature.

 Set the timer.

 ...

3 Decorating cookies.

Making a single batch: (1), then (2), then (3)

Making a double batch: (1), then (2), then (2), then (3)

Copyright 2008 by Pearson Education
14

Static methods
 static method: A named group of statements.

 denotes the structure of a program

 eliminates redundancy by code reuse

 procedural decomposition:

dividing a problem into methods

 Writing a static method is like

adding a new command to Java.

class

method A

 statement

 statement

 statement

method B

 statement

 statement

method C

 statement

 statement

 statement

Copyright 2008 by Pearson Education
15

Using static methods

1. Design the algorithm.

 Look at the structure, and which commands are repeated.

 Decide what are the important overall tasks.

2. Define (write down) the methods.

 Arrange statements into groups and give each group a name.

3. Call (run) the methods.

 The program's main method executes the other methods to

perform the overall task.

Copyright 2008 by Pearson Education
16

Final cookie program
// This program displays a delicious recipe for baking cookies.
public class BakeCookies3 {

public static void main(String[] args) {
makeBatter();
bake(); // 1st batch
bake(); // 2nd batch (remove for single batch)
decorate();

}

// Step 1: Make the cake batter.
public static void makeBatter() {

System.out.println("Mix the dry ingredients.");
System.out.println("Cream the butter and sugar.");
System.out.println("Beat in the eggs.");
System.out.println("Stir in the dry ingredients.");

}

// Step 2: Bake a batch of cookies.
public static void bake() {

System.out.println("Set the oven temperature.");
System.out.println("Set the timer.");
System.out.println("Place a batch of cookies into the oven.");
System.out.println("Allow the cookies to bake.");

}

// Step 3: Decorate the cookies.
public static void decorate() {

System.out.println("Mix ingredients for frosting.");
System.out.println("Spread frosting and sprinkles.");

}
}

Copyright 2008 by Pearson Education
17

Gives your method a name so it can be executed

 Syntax:

public static void name() {
statement;
statement;
...
statement;

}

 Example:

public static void printWarning() {

System.out.println("This product causes cancer");

System.out.println("in lab rats and humans.");

}

Declaring a method

Copyright 2008 by Pearson Education
18

Calling a method
Executes the method's code

 Syntax:

name();

 You can call the same method many times.

 Example:

printWarning();

 Output:

This product causes cancer

in lab rats and humans.

Copyright 2008 by Pearson Education
19

Program with static method
public class RepeatIt {

public static void main(String[] args) {

rap(); // Calling (running) the rap method

System.out.println();

rap(); // Calling the rap method again

}

// This method prints the lyrics to my favorite song.

public static void rap() {

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upside-down");

}

}

Output:

Now this is the story all about how

My life got flipped turned upside-down

Now this is the story all about how

My life got flipped turned upside-down

Copyright 2008 by Pearson Education
20

Methods calling methods
public class MethodsExample {

public static void main(String[] args) {

message1();

message2();
System.out.println("Done with main.");

}

public static void message1() {

System.out.println("This is message1.");

}

public static void message2() {

System.out.println("This is message2.");

message1();
System.out.println("Done with message2.");

}

}

 Output:
This is message1.

This is message2.

This is message1.

Done with message2.

Done with main.

Copyright 2008 by Pearson Education
21

 When a method is called, the program's execution...

 "jumps" into that method, executing its statements, then

 "jumps" back to the point where the method was called.

public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");

}

...

}

public static void message1() {

System.out.println("This is message1.");

}

public static void message2() {

System.out.println("This is message2.");

message1();

System.out.println("Done with message2.");

}

public static void message1() {

System.out.println("This is message1.");

}

Control flow

Copyright 2008 by Pearson Education
22

When to use methods
 Place statements into a static method if:

 The statements are related structurally, and/or

 The statements are repeated.

 You should not create static methods for:

 An individual println statement.

 Unrelated or weakly related statements.

(Consider splitting them into two smaller methods.)

 The order of methods in a class does not matter to Java

 Pick a sensible order for humans

 Example: main either at top or bottom (let’s say top)

Copyright 2008 by Pearson Education

Drawing complex figures
with static methods

reading: 1.5
(Ch. 1 Case Study: DrawFigures)

exercises: #7-9

videos: Ch. 1 #2

Copyright 2008 by Pearson Education
24

Static methods question
 Write a program to print these figures using methods.

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Copyright 2008 by Pearson Education
25

Development strategy

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

First version (unstructured):

 Create an empty program and main method.

 Copy the expected output into it, surrounding
each line with System.out.println syntax.

 Run it to verify the output.

Copyright 2008 by Pearson Education
26

Program version 1
public class Figures1 {

public static void main(String[] args) {

System.out.println(" ______");

System.out.println(" / \\");

System.out.println("/ \\");

System.out.println("\\ /");

System.out.println(" ______/");

System.out.println();

System.out.println("\\ /");

System.out.println(" ______/");

System.out.println("+--------+");

System.out.println();

System.out.println(" ______");

System.out.println(" / \\");

System.out.println("/ \\");

System.out.println("| STOP |");

System.out.println("\\ /");

System.out.println(" ______/");

System.out.println();

System.out.println(" ______");

System.out.println(" / \\");

System.out.println("/ \\");

System.out.println("+--------+");

}

}

Copyright 2008 by Pearson Education
27

Development strategy 2

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Second version (structured, with redundancy):

 Identify the structure of the output.

 Divide the main method into static methods

based on this structure.

Copyright 2008 by Pearson Education
28

Output structure

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

The structure of the output:

 initial "egg" figure

 second "teacup" figure

 third "stop sign" figure

 fourth "hat" figure

This structure can be represented by methods:

 egg

 teaCup

 stopSign

 hat

Copyright 2008 by Pearson Education
29

Program version 2
public class Figures2 {

public static void main(String[] args) {
egg();
teaCup();
stopSign();
hat();

}

public static void egg() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

public static void teaCup() {
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();

}
...

Copyright 2008 by Pearson Education
30

Program version 2, cont'd.
...

public static void stopSign() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

public static void hat() {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

Copyright 2008 by Pearson Education
31

Development strategy 3

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Third version (structured, without redundancy):

 Identify redundancy in the output, and create
methods to eliminate as much as possible.

 Add comments to the program.

Copyright 2008 by Pearson Education
32

Output redundancy

The redundancy in the output:

 egg top: reused on stop sign, hat

 egg bottom: reused on teacup, stop sign

 divider line: used on teacup, hat

This redundancy can be fixed by methods:

 eggTop

 eggBottom

 line

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Copyright 2008 by Pearson Education
33

Program version 3
// Suzy Student, CSE 138, Spring 2094
// Prints several figures, with methods for structure and redundancy.
public class Figures3 {

public static void main(String[] args) {
egg();
teaCup();
stopSign();
hat();

}

// Draws the top half of an an egg figure.
public static void eggTop() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");

}

// Draws the bottom half of an egg figure.
public static void eggBottom() {

System.out.println("\\ /");
System.out.println(" ______/");

}

// Draws a complete egg figure.
public static void egg() {

eggTop();
eggBottom();
System.out.println();

}

...

Copyright 2008 by Pearson Education
34

Program version 3, cont'd.
...

// Draws a teacup figure.
public static void teaCup() {

eggBottom();
line();
System.out.println();

}

// Draws a stop sign figure.
public static void stopSign() {

eggTop();
System.out.println("| STOP |");
eggBottom();
System.out.println();

}

// Draws a figure that looks sort of like a hat.
public static void hat() {

eggTop();
line();

}

// Draws a line of dashes.
public static void line() {

System.out.println("+--------+");
}

}

