
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-2: Object Methods and Constructors

reading: 8.2 - 8.4

self-checks: #1-12

exercises: #1-4, 9, 11, 14, 16

Copyright 2008 by Pearson Education
2

Recall: earthquake problem
 Given a file of cities' (x, y) coordinates,

which begins with the number of cities:
6

50 20

90 60

10 72

74 98

5 136

150 91

 Write a program to draw the cities on a DrawingPanel, then color

the cities red that are within the radius of effect of the
earthquake:

Epicenter x/y? 100 100

Radius of effect? 75

Copyright 2008 by Pearson Education
3

Object behavior:
methods

reading: 8.3

self-check: #7-9

exercises: #1-4

Copyright 2008 by Pearson Education
4

Client code redundancy
 Our client program wants to draw Point objects:

// draw each city

g.fillOval(cities[i].x, cities[i].y, 3, 3);

g.drawString("(" + cities[i].x + ", " + cities[i].y + ")",

cities[i].x, cities[i].y);

 To draw them in other places, the code must be repeated.

 We can remove this redundancy using a method.

Copyright 2008 by Pearson Education
5

Eliminating redundancy, v1
 We can eliminate the redundancy with a static method:

// Draws the given point on the DrawingPanel.

public static void draw(Point p, Graphics g) {

g.fillOval(p.x, p.y, 3, 3);

g.drawString("(" + p.x + ", " + p.y + ")", p.x, p.y);

}

 main would call the method as follows:

// draw each city

draw(cities[i], g);

Copyright 2008 by Pearson Education
6

Problems with static solution

 We are missing a major benefit of objects: code reuse.

 Every program that draws Points would need a draw method.

 The syntax doesn't match how we're used to using objects.

draw(cities[i], g); // static (bad)

 The point of classes is to combine state and behavior.

 The draw behavior is closely related to a Point's data.

 The method belongs inside each Point object.

cities[i].draw(g); // inside object (better)

Copyright 2008 by Pearson Education
7

Instance methods
 instance method: One that exists inside each object of a

class and defines behavior of that object.

public type name(parameters) {

statements;

}

 same syntax as static methods, but without static keyword

Example:

public void shout() {

System.out.println("HELLO THERE!");

}

Copyright 2008 by Pearson Education
8

Instance method example
public class Point {

int x;

int y;

// Draws this Point object with the given pen.

public void draw(Graphics g) {

...

}

}

 The draw method no longer has a Point p parameter.

 How will the method know which point to draw?

 How will the method access that point's x/y data?

Copyright 2008 by Pearson Education
9

 In effect, each Point object has its own copy of the draw

method, which operates on that object's state:

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

p1.draw(g);

p2.draw(g);

public void draw(Graphics g) {

// this code can see p1's x and y

}

Point objects w/ method

x 7 y 2

x 4 y 3

public void draw(Graphics g) {

// this code can see p2's x and y

}

p2

p1

Copyright 2008 by Pearson Education
10

The implicit parameter
 implicit parameter:

The object on which an instance method is called.

 During the call p1.draw(g);

the object referred to by p1 is the implicit parameter.

 During the call p2.draw(g);

the object referred to by p2 is the implicit parameter.

 The instance method can refer to that object's fields.

 We say that it executes in the context of a particular object.

 draw can refer to the x and y of the object it was called on.

Copyright 2008 by Pearson Education
11

Point class, version 2
public class Point {

int x;

int y;

// Changes the location of this Point object.

public void draw(Graphics g) {

g.fillOval(x, y, 3, 3);

g.drawString("(" + x + ", " + y + ")", x, y);

}

}

 Now each Point object contains a method named draw that

draws that point at its current x/y position.

Copyright 2008 by Pearson Education
12

Kinds of methods
 Instance methods take advantage of an object's state.

 Some methods allow clients to access/modify its state.

 accessor: A method that lets clients examine object state.

 Example: A distanceFromOrigin method that tells how far a
Point is away from (0, 0).

 Accessors often have a non-void return type.

 mutator: A method that modifies an object's state.

 Example: A translate method that shifts the position of a
Point by a given amount.

Copyright 2008 by Pearson Education
13

Mutator method questions
 Write a method setLocation that changes a Point's

location to the (x, y) values passed.

 You may want to refactor the Point class to use this method.

 Write a method translate that changes a Point's location

by a given dx, dy amount.

 Modify the client code to use these methods as appropriate.

Copyright 2008 by Pearson Education
14

Mutator method answers
public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

// alternative solution

public void translate(int dx, int dy) {

setLocation(x + dx, y + dy);

}

Copyright 2008 by Pearson Education
15

Mini-exercise
Define a “reset” method that resets the point’s location to 0,0

Cheat sheet example:

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

Copyright 2008 by Pearson Education
16

Mini-exercise -solution
Define a “reset” method that resets the point’s location to 0,0

Cheat sheet example:

public void reset() {

x = 0;

y = 0;

}

// alternate solution:

public void reset() {

setLocation(0,0);

}

Copyright 2008 by Pearson Education
17

Accessor method questions
 Write a method distance that computes the distance

between a Point and another Point parameter.

Use the formula:

 Write a method distanceFromOrigin that returns the
distance between a Point and the origin, (0, 0).

 Modify the client code to use these methods.

   
2

12

2

12
yyxx 

Copyright 2008 by Pearson Education
18

Accessor method answers
public double distance(Point other) {

int dx = x - other.x;

int dy = y - other.y;

return Math.sqrt(dx * dx + dy * dy);

}

public double distanceFromOrigin() {

return Math.sqrt(x * x + y * y);

}

// alternative solution

public double distanceFromOrigin() {

return distance(new Point());

}

Copyright 2008 by Pearson Education
19

Mini-exercise
Define an “atOrigin” method that returns true if the point’s

location is at 0,0

Copyright 2008 by Pearson Education
20

Mini-exercise -solution
Define an “atOrigin” method that returns true if the point’s

location is at 0,0

public boolean atOrigin() {

return x==0 && y==0;

}

Note: using the distanceFromOrigin method would be a good
idea from the point of view of code reuse -- but is probably
not ideal in this case because of potential rounding errors
using real numbers

Copyright 2008 by Pearson Education
21

Object initialization:
constructors

reading: 8.4

self-check: #10-12

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
22

Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

 We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8); // better!

 We are able to do this with most types of objects in Java.

Copyright 2008 by Pearson Education
23

Constructors

 constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

 runs when the client uses the new keyword

 does not specify a return type;

it implicitly returns the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0 (or zero-like values

for other types).

Copyright 2008 by Pearson Education
24

Constructor example

public class Point {

int x;

int y;

// Constructs a Point at the given x/y location.

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

Copyright 2008 by Pearson Education
25

Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

x yp1

Copyright 2008 by Pearson Education
26

Example Client Code
public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)

Copyright 2008 by Pearson Education
27

Common constructor bugs
 Accidentally writing a return type such as void:

public void Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

 This is not a constructor at all, but a method!

 Storing into local variables instead of fields ("shadowing"):

public Point(int initialX, int initialY) {

int x = initialX;

int y = initialY;

}

 This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

Copyright 2008 by Pearson Education
28

Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Write a constructor for Point objects that accepts no
parameters and initializes the point to the origin, (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}

Copyright 2008 by Pearson Education
29

Mini-exercise
Suppose we have defined a bank account class:

public class BankAccount {

double balance;

}

 Define a constructor with one argment, the initial balance

 Define another constructor with zero arguments, which
starts the balance off at $10 (PR move by the bank to try
and divert attention from its role in the subprime mortgage
meltdown …)

Copyright 2008 by Pearson Education
30

Mini-exercise - solution
 Define a constructor with one argment, the initial balance

 Define another constructor with zero arguments, which starts the
balance off at $10

public class BankAccount {

double balance;

public BankAccount() {

balance = 10.0;

}

public BankAccount(double initialBalance) {

balance = initialBalance;

}

}

Copyright 2008 by Pearson Education
31

The toString method

reading: 8.6

self-check: #18, 20-21

exercises: #9, 14

Copyright 2008 by Pearson Education
32

Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);

System.out.println("p: " + p); // p: Point@9e8c34

 We can print a better string (but this is cumbersome):

System.out.println("p: (" + p.x + ", " + p.y + ")");

 We'd like to be able to print the object itself:

// desired behavior

System.out.println("p: " + p); // p: (10, 7)

Copyright 2008 by Pearson Education
33

The toString method

 tells Java how to convert an object into a String

 called when an object is printed/concatenated to a String:

Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

 If you prefer, you can write .toString() explicitly.

System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 The default is the class's name and a hex (base-16) number:

Point@9e8c34

Copyright 2008 by Pearson Education
34

toString syntax
public String toString() {

code that returns a suitable String;

}

 The method name, return, parameters must match exactly.

 Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}

Copyright 2008 by Pearson Education
35

Client code
// This client program uses the Point class.

public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(7, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print each point's distance from the origin

System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again

p1.translate(11, 6);

p2.translate(1, 7);

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print distance from p1 to p2

System.out.println("distance from p1 to p2: " + p1.distance(p2));

}

}

