
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Encapsulation, this, Subclasses



Copyright 2008 by Pearson Education

Today

 Finish our earthquake example

 Use a Circle class to draw the circle and decide red-ness

 Encapsulation

 A really big deal when writing larger programs

 Need to use private fields on homework 8 (not difficult)

 The keyword this: Kind of a Chapter 8 loose end

 Subclasses and polymorphism

 Will continue next Wednesday



Copyright 2008 by Pearson Education

Using the Circle class

 Has lots of features we don’t need

 That’s normal

 Implementation uses some features we’ll learn later today

 But clients don’t care

 Uses a Point object 

 It’s normal for many classes to interact in many ways

 Simplifies the red-ness calculation

 Just to clients, the contains method has the same 

computation



Copyright 2008 by Pearson Education
4

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5



Copyright 2008 by Pearson Education
5

Encapsulation
 encapsulation: Hiding implementation details of an 

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.



Copyright 2008 by Pearson Education
6

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

private type name;

 Examples:

private int id;

private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^



Copyright 2008 by Pearson Education
7

Accessing private state
 We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

 Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);



Copyright 2008 by Pearson Education
8

Point class, revised
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}



Copyright 2008 by Pearson Education
9

Client code
public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")"); 

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")"); 

}

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)



Copyright 2008 by Pearson Education
10

Benefits of encapsulation
 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

 Like Apple building a cheaper iPod w/o you knowing

 Allows you to constrain objects' state (invariants).

 Example: Only allow Points with non-negative coordinates.



Copyright 2008 by Pearson Education
11

Example: Polar points
// A Point object represents an (x, y) location.
// This version has a simpler distanceFromOrigin but more complicated 
// everything else, but clients can’t tell
public class Point {

private double r;
private double theta;

public Point(int initialX, int initialY) {
setLocation(initialX, initialY);

}

public double distanceFromOrigin() {
return r;

}

public int getX() {
return (int) (r * Math.cos(theta));

}

public int getY() {
return (int) (r * Math.sin(theta));

}

public void setLocation(int newX, int newY) {
r = Math.sqrt(newX * newX + newY * newY);
theta = Math.atan2(newX, newY); // library method of just what we need

}

public void translate(int dx, int dy) {
setLocation(dx + getX(), dy + getY());

}
}



Copyright 2008 by Pearson Education
12

The keyword this

reading: 8.7



Copyright 2008 by Pearson Education
13

this
 this : A reference to the implicit parameter.

 implicit parameter: object on which a method is called

 Common uses for this:

 To refer to a field (this is usually optional):

this.field

 To call a method (this is optional):

this.method(parameters);

 To use “yourself” as an argument:

this

 To call a constructor from another constructor:

this(parameters);



Copyright 2008 by Pearson Education
14

Variable names and scope
 Usually it is illegal to have two variables in the same scope 

with the same name.

public class Point {

private int x;

private int y;

...

public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

}

 The parameters to setLocation are named newX and newY to 
be distinct from the object's fields x and y.



Copyright 2008 by Pearson Education
15

Variable shadowing
 An instance-method parameter can have the same name as 

one of the object's fields:

// this is legal

public void setLocation(int x, int y) {

...

}

 Fields x and y are shadowed by parameters with same names.

 Any setLocation code that refers to x or y will use the 

parameter, not the field.



Copyright 2008 by Pearson Education
16

Using this with shadowing
public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) {

this.x = x;

this.y = y;

}

}

 Inside the setLocation method,

 When this.x is seen, the field x is used.

 When x is seen, the parameter x is used.

 Can always use this.x for field access if you want



Copyright 2008 by Pearson Education
17

this for method calls

 We know one instance method can call another:

public String toString() {

return "(" + x + ", " + y + ")";

}

public void draw(Graphics g) {

g.fillOval(x, y, 2, 2);

g.drawString(toString(), x, y);

}

 The implicit parameter is “passed along to the callee”

 Can make this explicit if you want, but not necessary

public String toString() {

return "(" + x + ", " + y + ")";

}

public void draw(Graphics g) {

g.fillOval(x, y, 2, 2);

g.drawString(this.toString(), x, y);

}



Copyright 2008 by Pearson Education
18

Passing yourself

 Occasionally want to pass “the whole current object” to 
another method

 Example that works as a more complicated replacement:

 Instead of:

public double distFromOrigin() {

Point p = new Point(0,0);

return distance(p);

}

 Could do:

public double distFromOrigin() {

Point p = new Point(0,0);

return p.distance(this);

}



Copyright 2008 by Pearson Education
19

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

public class Point {

private int x;

private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

...

}



Copyright 2008 by Pearson Education
20

Constructors and this

 One constructor can call another using this

 This use of this is different from the others (weird but useful)

public class Point {

private int x;

private int y;

public Point() {

this(0, 0);  // calls the (x, y) constructor

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}



Copyright 2008 by Pearson Education
21

Inheritance

Chapter 9

Lecture 9-1: Inheritance

reading: 9.1 - 9.2



Copyright 2008 by Pearson Education
22

An Employee class
// A class to represent employees in general 

public class Employee {

public int getHours() {

return 40;           // works 40 hours / week

}

public double getSalary() {

return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {

return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {

return "yellow";     // use the yellow form

}

}

 Exercise: Implement class TechWriter, based on the previous 
employee regulations.  (Tech writers can write manuals.)



Copyright 2008 by Pearson Education
23

Redundant TechWriter class
// A redundant class to represent tech writers.

public class TechWriter {

public int getHours() {

return 40;           // works 40 hours / week

}

public double getSalary() {

return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {

return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {

return "yellow";     // use the yellow form

}

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}



Copyright 2008 by Pearson Education
24

Desire for code-sharing
 writeManual is the only unique behavior in TechWriter.

 We'd like to be able to say:

// A class to represent tech writers.

public class TechWriter {

copy all the contents from the Employee class;

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}



Copyright 2008 by Pearson Education
25

Inheritance
 inheritance: A way to form new classes based on existing 

classes, taking on their attributes/behavior.

 a way to group related classes

 a way to share code between two or more classes

 One class can extend another, absorbing its data/behavior.

 superclass: The parent class that is being extended.

 subclass: The child class that extends the superclass and 
inherits its behavior.

 Subclass gets a copy of every field and method from superclass



Copyright 2008 by Pearson Education
26

Inheritance syntax
public class name extends superclass {

 Example:

public class TechWriter extends Employee {

...

}

 By extending Employee, each TechWriter object now:

 receives a getHours, getSalary, getVacationDays, and 
getVacationForm method automatically

 can be treated as an Employee by client code (seen later)



Copyright 2008 by Pearson Education
27

Improved TechWriter code
// A class to represent tech writers.

public class TechWriter extends Employee {

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}

 Now we only write the parts unique to each type.

 TechWriter inherits getHours, getSalary, getVacationDays, 
and getVacationForm methods from Employee.

 TechWriter adds the writeManual method.



Copyright 2008 by Pearson Education
28

Mini-Exercise
 Define a Programmer class that includes a "designGame" 

method (these programmers work for a gaming company).
This method should just print out an informative note.

Cheat sheet:

// A class to represent tech writers.

public class TechWriter extends Employee {

public void writeManual(String app) {

System.out.println("Writing a manual about: " + app);

}

}



Copyright 2008 by Pearson Education
29

Mini-Exercise - solution
 Define a Programmer class that includes a "designGame" 

method (these programmers work for a gaming company).

// A class to represent programmers at a game company.

public class Programmer extends Employee {

public void designGame(String name) {

System.out.println(Designing the " + name + " game");

}

}

// sample uses:

// Programmer chris = new Programmer();

// chris.designGame("Dragon5000");

// double dollars = chris.getSalary();



Copyright 2008 by Pearson Education
30

Implementing Lawyer

 Consider the following lawyer regulations:

 Lawyers who get an extra week of paid vacation (a total of 3).

 Lawyers use a pink form when applying for vacation leave.

 Lawyers have some unique behavior: they know how to sue.

 Problem: We want lawyers to inherit most behavior from 
employee, but we want to replace parts with new behavior.



Copyright 2008 by Pearson Education
31

Overriding methods
 override: To write a new version of a method in a subclass 

that replaces the superclass's version.

 No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {

// overrides getVacationForm method in Employee class

public String getVacationForm() {

return "pink";

}

...

}

 Exercise: Complete the Lawyer class.

 (3 weeks vacation, pink vacation form, can sue)



Copyright 2008 by Pearson Education
32

Lawyer class
// A class to represent lawyers.

public class Lawyer extends Employee {

// overrides getVacationForm from Employee class

public String getVacationForm() {

return "pink";

}

// overrides getVacationDays from Employee class

public int getVacationDays() {

return 15;           // 3 weeks vacation

}

public void sue() {

System.out.println("I'll see you in court!");

}

}

 Exercise: Complete the Marketer class.  Marketers make 
$10,000 extra ($50,000 total) and know how to advertise.



Copyright 2008 by Pearson Education
33

Levels of inheritance
 Multiple levels of inheritance in a hierarchy are allowed.

 Example: A bilingual tech writer is the same as a regular tech 
writer but makes more money ($45,000) and can also write 
manuals in (say) German.

public class BilingualTechWriter extends TechWriter {

...

}

 Next time: Using the fact that any BilingualTechWriter or 
TechWriter is also an Employee

 And the Java compiler knows it


