Building Java Programs

Chapter 8
Encapsulation, this, Subclasses

~ " Copyright 2008 by Pearson E ducation




—

Today

* Finish our earthquake example
e Use a circle class to draw the circle and decide red-ness

* Encapsulation

» A really big deal when writing larger programs
*» Need to use private fields on homework 8 (not difficult)

* The keyword this: Kind of a Chapter 8 loose end

e Subclasses and polymorphism
o Will continue next Wednesday

Copyright 2008 by Pearson Education



 —
Using the Circle class

e Has lots of features we don’t need
e That's normal

 Implementation uses some features we’ll learn later today
» But clients don’t care

* Uses a pPoint object
» It's normal for many classes to interact in many ways

* Simplifies the red-ness calculation
e Just to clients, the contains method has the same
computation

Copyright 2008 by Pearson Education



Encapsulation

reading: 8.5 - 8.6
self-check: #13-17
exercises: #5

~ " Copyright 2008 by Pearson Education




 —
Encapsulation

* encapsulation: Hiding implementation details of an
object from its clients.

» Encapsulation provides abstraction.
« separates external view (behavior) from internal view (state)
» Encapsulation protects the integrity of an object's data.

-
Lo
T.0 : [T 4 o3y
. . 10 $22%
L I
. Qo
' <R ST LT

40310 it
/ Aubi OUTPUT
Add Measure=jm

Registor voltage .82
Here Here

e

" Copyright 2008 by Pearson Education



//

L —
Private fields

» A field can be declared private.
» No code outside the class can access or change it.

private type name;

 Examples:

private int 1d;

private String name;

* Client code sees an error when accessing private fields:

PointMain. java:11l: x has private access in Point
Sveteam ont pranEintiph as G ranl e e B vy

A

Copyright 2008 by Pearson Education



//
// u m
Accessing private state

* We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")
eiblcR Vel W ehnio fa g R
e puinases
}
// Allows clients to change the x field ("mutator")

public void setX(int newX) {
X = newX;

e Client code will look more like this:

Sy stensoutyprintin ol sl agat Xty ettt sl oget Y () b i

pl.setX(14) ;

" Copyright 2008 by Pearson Education



e

 —
Point class, revised

// A Point object represents an (x, y) location.
public class Point {

private int x;

private int y;

N A TR B A T S S A ) S S U S e S S S B e

Aot Py oAl £ WA )
N e s RSy o e WA N
}
S R T S D S B B e S e S S S R e

o TR L A A AAORe B 1 S T LAY S Y
}

public int getX() {
return x;
}

public int getY¥Y () {
return y;
}

public void setlLocation(int newX, int newY) {
X newx;
y newy;

}

public void translate(int dx, int dy) {
b Ry

Y Vel

e

~ Copyright 2008 by Pearson Education



—

Client code

L A R R s
publteiyatat ey valdimaintsString bl argay
// create two Point objects
P e g e B i
Point p2 = new Point (4, 3);

// print each point
System.out.println("pl: (" + pl.getX() +
Systemsoubvprinelntiplrtlarop2ogetXt) it

// move p2 and then print it again
O e R e E e S i e
System.out.println("p2: (" + p2.getX() +

}

OUTPUT:

| ) ek of =00 (e GA A
sl 3y
ORI Y AR G S )

e

~ Copyright 2008 by Pearson Education

Wk pliager Yy iy
MohplegeEY Oy ity
Woppduiget Y oy



_—
/

Benefits of encapsulation

* Provides abstraction between an object and its clients.

* Protects an object from unwanted access by clients.
» A bank app forbids a client to change an Account's balance.

* Allows you to change the class implementation.

* Point could be rewritten to use polar coordinates
(radius r, angle @), but with the same methods. i

» Like Apple building a cheaper iPod w/o you knowingI

Y

* Allows you to constrain objects' state (invariants).
« Example: Only allow Points with non-negative coordinates.

10

Copyright 2008 by Pearson Education



//

 —
Example: Polar points

// A Point object represents an (x, y) location.
// This version has a simpler distanceFromOrigin but more complicated
// everything else, but clients can’t tell
public class Point {
private double r;
private double theta;

public Point(int initialX, int initialY) {
setlocation(initialX, initialY);

}

public double distanceFromOrigin() ({
return r;
}

public int getX() {
return (int) (r * Math.cos(theta));
}

public int get¥Y () {
return (int) (r * Math.sin(theta));
}

public void setLocation(int newX, int newY) ({
r = Math.sqgrt(newX * newX + newY * newY);

theta = Math.atan2 (newX, newY); // library method of just what we need
}

public void translate(int dx, int dy) {
setLocation(dx + getX(), dy + get¥())
}

- . 11
s Copyright 2008 by Pearson Education



The keyword this

reading: 8.7

-

~ " Copyright 2008 by Pearson E ducation

12



this

* this : A reference to the implicit parameter.
o implicit parameter: object on which a method is called

e Common uses for this:

» To refer to a field (this is usually optional):
this.field

e To call a method (this is optional):
this.method (parameters) ;

» To use “yourself” as an argument:
this

e To call a constructor from another constructor:
this (parameters) ;

Copyright 2008 by Pearson Education

i



//

 —
Variable names and scope

e Usually it is illegal to have two variables in the same scope
with the same name.

(BIYY o e e DoV e e B A s
pPrivabe dantxes
private int y;

jeasy e e e el el s e el e e e VS R e U T A e
X = newX;
Yy = newy;

}

» The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

e 14
Copyright 2008 by Pearson Education



T
 —
Variable shadowing

* An instance-method parameter can have the same name as
one of the object's fields:

// this is legal

pubfrevwordisetliocabontintavdnt apyay

}

» Fields x and y are shadowed by parameters with same names.
» Any setLocation code that refers to x or y will use the
parameter, not the field.

15

Copyright 2008 by Pearson Education



T
Using this with shadowing

publicrelass Pornt i
private int x;
private int y;

public vord  setiiocatl on CERT Y Aty
this.x = x;
this.y = y;

}

e Inside the setLocation method,
» When this.x is seen, the field x is used.
» When x is seen, the parameter x is used.

* Can always use this.x for field access if you want

) 16
- Copyright 2008 by Pearson Education



//

this for method calls

e We know one instance method can call another:

NN SN AN ST A o N6 LR A S it AL gl 1 ) SO

return " (" _I_ X _|_ ", " _I_ y + ") "’.
}
phablievvoldrdrawtaGraphicsygivi

S SR i
SEehae s H s iale i R OIS e Ve Y S
}
e The implicit parameter is “passed along to the callee”
» Can make this explicit if you want, but not necessary
jeyblchiatio Sl s aatinlopinie Sl shatinlo AR
return " (H _I_ X _|_ ", 1A _I_ y _I_ ") ",.
}
publivcrvordivdrawtGraphiics gl

S BNG L R H Ci s lE L
gudrawstring tEhig v oSt ring () vy i

17
Copyright 2008 by Pearson Education



Passing yourself

e Occasionally want to pass “the whole current object” to
another method

» Example that works as a more complicated replacement:
» Instead of:
publrevdenblerdyst PromOrrgrnt) i
POl p = mew i Porni (0 0%
return distance (p);
}
» Could do:
pabliverdorbievdirstitromaiaigah by
Pointrpr=rnew Polnt (00
return p.distance(this);

Copyright 2008 by Pearson Education

18



//

/ .
Multiple constructors

e It is legal to have more than one constructor in a class.
» The constructors must accept different parameters.

publrcvelass Polntid
O S A o
privabe ant v,

public Point () ({
0;
0;

2 bEetiatelid o b Make (el nts i na e W G e el U a Dalr i G T
b2 QiS00 e e 0 e v A )
Wi At ma =

e 3 19
G Copyright 2008 by Pearson Education



”/;,ﬁyff’i;/—
Constructors and this

* One constructor can call another using this
» This use of this is different from the others (weird but useful)

publiwicwelassPosntay
e e S
private int vy;

o edvie et
this (0, 0); // calls the (x, y) constructor

} \\\\:::\\\\\\‘
eisleRfaer o ohthny Miishn b diagbn Y AR

this.x = x;
this.y = y;

}

20
Copyright 2008 by Pearson Education



Inheritance

Chapter 9
Lecture 9-1: Inheritance

reading: 9.1 - 9.2

"
S 21
~ " Copyright 2008 by Pearson Education




//
 —
An Employee class

// A class to represent employees in general
Sllenmns e e el e e
publaciiinirigatBour sty
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays () {
e i G // 2 weeks' paid vacation

}

pDabdrcwderingrdetiacaboni ol
ety e iiows // use the yellow form

}

o Exercise: Implement class TechwWwriter, based on the previous
employee reqgulations. (Tech writers can write manuals.)

a8 22
. Copyright 2008 by Pearson Education



 —
Redundant TechWriter class

// A redundant class to represent tech writers.
0 e e e
plabdeTdnErge ORI
return 40; // works 40 hours / week

}

public double getSalary () {
return 40000.0; // $40,000.00 / year

}

public int getVacationDays () {
e i G // 2 weeks' paid vacation

}

pDabdrcwderingrdetiacaboni ol
return "yellow"; // use the yellow form

}

public void writeManual (String app) {
System.out.println("Writing a manual about: " + app);

}

23

7

~ Copyright 2008 by Pearson Education



//

Desire for code-sharing

* writeManual is the only unique behavior in TechwWwriter.

» We'd like to be able to say:

// A class to represent tech writers.
public class TechWriter {
copy all the contents from the Employee class;

public void writeManual (String app) {
SyvatemTonbiprinEintiWeitinag aimanual i abont ey

24

~ Copyright 2008 by Pearson Education



Inheritance

* inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

* a way to group related classes
* a way to share code between two or more classes

* One class can extend another, absorbing its data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.

« Subclass gets a copy of every field and method from superclass

SRR 25
Copyright 2008 by Pearson Education



//

/ n
Inheritance syntax

public class name extends superclass {

 Example:

public class TechWriter extends Employee {

* By extending Employee, each TechWriter object now:

* receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

e can be treated as an Employee by client code (seen later)

s 26
Copyright 2008 by Pearson Education



" d//),,;%f”fl,——
 —
Improved TechWriter code

// A class to represent tech writers.
public class TechWriter extends Employee {
Sedbae e B e i i e P SR st e
e T o e e e A R e e e e e e

}

* Now we only write the parts unique to each type.

e TechWriter inherits getHours, getSalary, getVacationDays,
and getvVacationForm methods from Employee.

e TechWriter adds the writeManual method.

- . 27
s Copyright 2008 by Pearson Education



//

————
Mini-Exercise
* Define a Programmer class that includes a "designGame"

method (these programmers work for a gaming company).
This method should just print out an informative note.

Cheat sheet:

// A class to represent tech writers.
public class TechWriter extends Employee {
e e e e 1 R e o
S oo B e eh e e AR R S e e R e e

}

A 28
: Copyright 2008 by Pearson Education



’/’;,,¢¢f”flz——
 —
Mini-Exercise - solution

* Define a Programmer class that includes a "designGame"
method (these programmers work for a gaming company).

// A class to represent programmers at a game company.
public class Programmer extends Employee {

public void designGame (String name) {
AN S P R S S IO PN 6V V] SR WAV AT SRt Y SV I R R T RS P Y

}

// sample uses:
// Programmer chris = new Programmer () ;

// chris.designGame ("Dragon5000") ;
// double dollars = chris.getSalary():;

Copyright 2008 by Pearson Education



/ u
Implementing Lawyer

* Consider the following lawyer regulations:
» Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
» Lawyers have some unique behavior: they know how to sue.

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

SRR 30
' Copyright 2008 by Pearson Education



//

 —
Overriding methods

e override: To write a new version of a method in a subclass
that replaces the superclass's version.

» No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee class
public String getVacationForm() ({
return "pink";

}

» Exercise: Complete the Lawyer class.
« (3 weeks vacation, pink vacation form, can sue)

SRR 3
G Copyright 2008 by Pearson Education



 —
Lawyer class

// A class to represent lawyers.
public class Lawyer extends Employee {
// overrides getVacationForm from Employee class
e e A e e e B e
A S

}

// overrides getVacationDays from Employee class

public int getVacationDays () {
return 15; // 3 weeks vacation

}

public void sue () {
Systemyoubrprantin it yseevyourin i court i)

}

o Exercise: Complete the Marketer class. Marketers make

$10,000 extra ($50,000 total) and know how to advertise.

" Copyright 2008 by Pearson Education

.



Levels of inheritance

e Multiple levels of inheritance in a hierarchy are allowed.

 Example: A bilingual tech writer is the same as a regular tech
writer but makes more money ($45,000) and can also write
manuals in (say) German.

public class BilingualTechWriter extends TechWriter ({

* Next time: Using the fact that any BilingualTechWriter or
TechWriter is also an Employee

» And the Java compiler knows it

SRR 33
' Copyright 2008 by Pearson Education



