
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9

Critters; Subtype Polymorphism

Reading: HW9 Handout, Chapter 9.2

Copyright 2008 by Pearson Education
2

Critters
 A 2-D simulation world with animal objects with behavior:

 getMove what to do “on each turn”

 toString letter to display for this animal

 getColor color to display for this animal

 You implement 4 classes (kinds of critters):

 Bear

 Lion

 Tiger

 Husky (creative)

 All other classes

written for you

Copyright 2008 by Pearson Education
3

A Critter subclass

public class name extends Critter {

...

}

 extends Critter tells the simulator your class is a critter

 an example of inheritance

 Write a constructor to initialize each critter’s state

 Implement the 3 methods that define the critter’s behavior

Copyright 2008 by Pearson Education
4

How the simulator works
 CritterMain.java (written for you) makes a bunch of

critters and puts them randomly in the world.

 All you do is (un)comment-out relevant lines

 When you press “start”, the simulator enters a loop:
 moves each animal once (getMove), in random order

 uses getColor and toString to display your critter

 Key concept: The simulator is in control, NOT your animal.
 Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

 Your animal must keep state (as fields) so that it can make
a single move, and know what moves to make later.

Copyright 2008 by Pearson Education
5

Actions

Each critter is in some position facing some direction

Every getMove method returns an Action,

which is 1 of 4 constants:

 Action.HOP: Forward 1 space (no effect if occupied or wall)

 Action.LEFT: Turn 90-degrees counter-clockwise

 Action.RIGHT: Turn 90-degrees clockwise

 Action.INFECT: Infect critter in front of you (no effect if

no critter in front or your own species)

 Turns other critter into one of your species (!)

Copyright 2008 by Pearson Education
6

CritterInfo

 The argument to getMove is an object with methods that

provide lots of useful information:

 Neighbors: what is in front, behind, to left, and to right

 wall, nothing, same species, another species

 Direction: what way are you facing

 North, South, East, West

 Infection count: number of critters you have infected

 Only useful if trying for world domination (see the handout)

 But your critters will also need state (fields) to remember
enough about what they have done in the past

 Example need:

“Hop forward unless that is what I did on my last move”

 Example in section tomorrow

Copyright 2008 by Pearson Education
7

Tournament

 Your Husky class can do whatever you want

 Some style points dedicated to creativity

 To win the tournament, must best “survive” in a world filled
with other species (your opponents)

 Details posted later

 “Playoffs” in class on last day

Copyright 2008 by Pearson Education
8

Example Critters

The code provided to you also includes two simple critters

 Yours will be more interesting

 Food: Stay in one place, easy to be infected

 Does try to infect others (rather unlike “food”)

 FlyTrap: Stay in one place, but spin around and always try
to infect

 A surprisingly good strategy

Copyright 2008 by Pearson Education
9

Critter exercise

 Write a critter class Cougar (the dumbest of all animals):

Method Behavior

getMove Hop unless at wall then turn left

getColor red

toString "C"

Copyright 2008 by Pearson Education
10

Ideas for state
 You must not only have the right state, but update that

state properly when relevant actions occur.

 Two approaches:

 How many moves of some sort has this animal made?

 What has this animal done recently?

(The first approach is often shorter.)

 Food, FlyTrap, and Cougar are too simple to need state.

Copyright 2008 by Pearson Education
11

Testing critters
 Focus on one specific Critter of one specific type

 Only spawn 1 of each Critter type

 (Be sure to test with more later)

 Make sure your fields update properly

 Use println statements to see field values

 Look at the behavior one step at a time

 Use “step” rather than “start”

 Debug: Shows direction faced rather than normal String

 Example: Cougar without most other species

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9

Lecture 9-3: Polymorphism

reading: 9.1-9.2

self-check: #5-9

Copyright 2008 by Pearson Education
13

Polymorphism

 polymorphism: Ability for the same code to be used with

different types of objects.

 System.out.println can print any type of object.

 Each one displays in its own way on the console.

 CritterMain can interact with any type of critter.

 Each one moves, infects, etc. in its own way.

 Java supports polymorphism in a few ways

 We will learn about subtyping via inheritance

Copyright 2008 by Pearson Education
14

Coding with polymorphism
 A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

 You can call any methods from Employee on ed.

 You cannot call any methods specific to Lawyer (e.g. sue).

 When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()); // 40000.0

System.out.println(ed.getVacationForm()); // pink

Copyright 2008 by Pearson Education
15

Polymorphism and parameters

 You can pass any subtype of a parameter's type.

public class EmployeeMain {

public static void main(String[] args) {

Lawyer leslie = new Lawyer();

TechnicalWriter toby = new TechnicalWriter();

printInfo(leslie);

printInfo(toby);

}

public static void printInfo(Employee empl) {

System.out.println("salary = " + empl.getSalary());

System.out.println("days = " + empl.getVacationDays());

System.out.println("form = " + empl.getVacationForm());

System.out.println();

}

}

OUTPUT:

salary = 40000.0 salary = 40000.0
vacation days = 15 vacation days = 10
vacation form = pink vacation form = yellow

Copyright 2008 by Pearson Education
16

Polymorphism and arrays
 Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Lawyer(), new TechnicalWriter(),
new Marketer(), new Lawyer() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays());
System.out.println();

}
}

}

Output:

salary: 40000.0
v.days: 15

salary: 40000.0
v.days: 10

salary: 50000.0
v.days: 10

salary: 40000.0
v.days: 15

Copyright 2008 by Pearson Education
17

Polymorphism problems

 A few classes with inheritance relationships are shown.

 Can have multiple levels of subclasses

 A client program calls methods on objects of each class.

 You must read the code and determine the client's output.

 (On the final exam, at least a “simple” version)

Copyright 2008 by Pearson Education
18

A polymorphism problem
 Assume that the following four classes have been declared:

public class Foo {

public void method1() {

System.out.println("foo 1");

}

public void method2() {

System.out.println("foo 2");

}

public String toString() {

return "foo";

}

}

public class Bar extends Foo {

public void method2() {

System.out.println("bar 2");

}

}

Copyright 2008 by Pearson Education
19

A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

 What would be the output of the following client code?

Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);

pity[i].method1();

pity[i].method2();

System.out.println();

}

Copyright 2008 by Pearson Education
20

 Add classes from top (superclass) to bottom (subclass).

 Include all inherited methods.

Diagramming the classes

Copyright 2008 by Pearson Education
21

Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

Copyright 2008 by Pearson Education
22

Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {
System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

 Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

Copyright 2008 by Pearson Education
23

A harder problem
 The order of the classes is jumbled up (easy).

 The methods sometimes call other methods (tricky!!)

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

Copyright 2008 by Pearson Education
24

Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b ");

}
}

public class Yam extends Lamb {
public void a() {

System.out.print("Yam a ");
}

public String toString() {
return "Yam";

}
}

 What would be the output of the following client code?

Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};

for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);

food[i].a();

System.out.println(); // to end the line of output

food[i].b();

System.out.println(); // to end the line of output

System.out.println();

}

Copyright 2008 by Pearson Education
25

Class diagram

Copyright 2008 by Pearson Education
26

Polymorphism at work
 Lamb inherits Ham's a. a calls b. But Lamb overrides b...

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

 Lamb's output from a:
Ham a Lamb b

Copyright 2008 by Pearson Education
27

The table

method Ham Lamb Yam Spam

a

b

toString

method Ham Lamb Yam Spam

a Ham a

b()

Yam a

Ham a

b()

b Ham b Lamb b Spam b

toString Ham Yam

method Ham Lamb Yam Spam

a Ham a

b()

Ham a

b()

Yam a

Ham a

b()

b Ham b Lamb b Lamb b Spam b

toString Ham Ham Yam Yam

Copyright 2008 by Pearson Education
28

The answer
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};

for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);

food[i].a();

food[i].b();

System.out.println();

}

 Output:
Ham
Ham a Lamb b
Lamb b

Ham
Ham a Ham b
Ham b

Yam
Yam a
Spam b

Yam
Yam a
Lamb b

