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Building Java Programs

Chapter 9

Critters; Subtype Polymorphism

Reading: HW9 Handout, Chapter 9.2
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Critters
 A 2-D simulation world with animal objects with behavior:

 getMove what to do “on each turn”

 toString letter to display for this animal

 getColor color to display for this animal

 You implement 4 classes (kinds of critters):

 Bear

 Lion

 Tiger

 Husky (creative)

 All other classes

written for you
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A Critter subclass

public class name extends Critter {

...

}

 extends Critter tells the simulator your class is a critter

 an example of inheritance

 Write a constructor to initialize each critter’s state

 Implement the 3 methods that define the critter’s behavior
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How the simulator works
 CritterMain.java (written for you) makes a bunch of 

critters and puts them randomly in the world.

 All you do is (un)comment-out relevant lines

 When you press “start”, the simulator enters a loop:
 moves each animal once (getMove), in random order

 uses getColor and toString to display your critter

 Key concept: The simulator is in control, NOT your animal.
 Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

 Your animal must keep state (as fields) so that it can make 
a single move, and know what moves to make later.
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Actions

Each critter is in some position facing some direction

Every getMove method returns an Action, 

which is 1 of 4 constants:

 Action.HOP: Forward 1 space (no effect if occupied or wall)

 Action.LEFT: Turn 90-degrees counter-clockwise

 Action.RIGHT: Turn 90-degrees clockwise

 Action.INFECT: Infect critter in front of you (no effect if 

no critter in front or your own species)

 Turns other critter into one of your species (!)
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CritterInfo

 The argument to getMove is an object with methods that 

provide lots of useful information:

 Neighbors: what is in front, behind, to left, and to right

 wall, nothing, same species, another species

 Direction: what way are you facing

 North, South, East, West

 Infection count: number of critters you have infected

 Only useful if trying for world domination (see the handout)

 But your critters will also need state (fields) to remember 
enough about what they have done in the past

 Example need: 

“Hop forward unless that is what I did on my last move”

 Example in section tomorrow
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Tournament

 Your Husky class can do whatever you want

 Some style points dedicated to creativity

 To win the tournament, must best “survive” in a world filled 
with other species (your opponents)

 Details posted later

 “Playoffs” in class on last day
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Example Critters

The code provided to you also includes two simple critters

 Yours will be more interesting

 Food: Stay in one place, easy to be infected

 Does try to infect others (rather unlike “food”)

 FlyTrap: Stay in one place, but spin around and always try 
to infect

 A surprisingly good strategy
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Critter exercise

 Write a critter class Cougar (the dumbest of all animals):

Method Behavior

getMove Hop unless at wall then turn left

getColor red

toString "C"
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Ideas for state
 You must not only have the right state, but update that 

state properly when relevant actions occur.

 Two approaches:

 How many moves of some sort has this animal made?

 What has this animal done recently?

(The first approach is often shorter.)

 Food, FlyTrap, and Cougar are too simple to need state.
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Testing critters
 Focus on one specific Critter of one specific type

 Only spawn 1 of each Critter type

 (Be sure to test with more later)

 Make sure your fields update properly

 Use println statements to see field values

 Look at the behavior one step at a time

 Use “step” rather than “start”

 Debug: Shows direction faced rather than normal String

 Example: Cougar without most other species
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Building Java Programs

Chapter 9

Lecture 9-3: Polymorphism

reading: 9.1-9.2

self-check: #5-9
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Polymorphism

 polymorphism: Ability for the same code to be used with 

different types of objects.

 System.out.println can print any type of object.

 Each one displays in its own way on the console.

 CritterMain can interact with any type of critter.

 Each one moves, infects, etc. in its own way.

 Java supports polymorphism in a few ways

 We will learn about subtyping via inheritance
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Coding with polymorphism
 A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

 You can call any methods from Employee on ed.

 You cannot call any methods specific to Lawyer (e.g. sue).

 When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary());         // 40000.0

System.out.println(ed.getVacationForm());   // pink
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Polymorphism and parameters

 You can pass any subtype of a parameter's type.

public class EmployeeMain {

public static void main(String[] args) {

Lawyer leslie = new Lawyer();

TechnicalWriter toby = new TechnicalWriter();

printInfo(leslie);

printInfo(toby);

}

public static void printInfo(Employee empl) {

System.out.println("salary = " + empl.getSalary());

System.out.println("days = " + empl.getVacationDays());

System.out.println("form = " + empl.getVacationForm());

System.out.println();

}

}

OUTPUT:

salary = 40000.0 salary = 40000.0
vacation days = 15 vacation days = 10
vacation form = pink vacation form = yellow
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Polymorphism and arrays
 Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Lawyer(),   new TechnicalWriter(), 
new Marketer(), new Lawyer() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays());
System.out.println();

}
}

}

Output:

salary: 40000.0
v.days: 15

salary: 40000.0
v.days: 10

salary: 50000.0
v.days: 10

salary: 40000.0
v.days: 15
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Polymorphism problems

 A few classes with inheritance relationships are shown.

 Can have multiple levels of subclasses

 A client program calls methods on objects of each class.

 You must read the code and determine the client's output.

 (On the final exam, at least a “simple” version)
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A polymorphism problem
 Assume that the following four classes have been declared:

public class Foo {

public void method1() {

System.out.println("foo 1");

}

public void method2() {

System.out.println("foo 2");

}

public String toString() {

return "foo";

}

}

public class Bar extends Foo {

public void method2() {

System.out.println("bar 2");

}

}
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A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

 What would be the output of the following client code?

Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);

pity[i].method1();

pity[i].method2();

System.out.println();

}
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 Add classes from top (superclass) to bottom (subclass).

 Include all inherited methods.

Diagramming the classes
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Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz
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Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};

for (int i = 0; i < pity.length; i++) {
System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

 Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2
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A harder problem
 The order of the classes is jumbled up (easy).

 The methods sometimes call other methods (tricky!!)

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b   ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a   ");
b();

}

public void b() {
System.out.print("Ham b   ");

}

public String toString() {
return "Ham";

}
}
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Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b   ");

}
}

public class Yam extends Lamb {
public void a() {

System.out.print("Yam a   ");
}

public String toString() {
return "Yam";

}
}

 What would be the output of the following client code?

Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};

for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);

food[i].a();

System.out.println();     // to end the line of output

food[i].b();

System.out.println();     // to end the line of output

System.out.println();

}
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Class diagram
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Polymorphism at work
 Lamb inherits Ham's a.  a calls b.  But Lamb overrides b...

public class Ham {
public void a() {

System.out.print("Ham a   ");
b();

}

public void b() {
System.out.print("Ham b   ");

}

public String toString() {
return "Ham";

}
}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b   ");
}

}

 Lamb's output from a:
Ham a   Lamb b
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The table

method Ham Lamb Yam Spam

a

b

toString

method Ham Lamb Yam Spam

a Ham a

b()

Yam a

Ham a

b()

b Ham b Lamb b Spam b

toString Ham Yam

method Ham Lamb Yam Spam

a Ham a

b()

Ham a

b()

Yam a

Ham a

b()

b Ham b Lamb b Lamb b Spam b

toString Ham Ham Yam Yam
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The answer
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};

for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);

food[i].a();

food[i].b();

System.out.println();

}

 Output:
Ham
Ham a   Lamb b
Lamb b

Ham
Ham a   Ham b
Ham b

Yam
Yam a
Spam b

Yam
Yam a   
Lamb b


