Building Java Programs

Chapter 9
Critters; Subtype Polymorphism

Reading: HW9 Handout, Chapter 9.2
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Critters

* A 2-D simulation world with animal objects with behavior:
* getMove what to do “on each turn”

» toString letter to display for this animal
*» getColor  color to display for this animal

* You implement 4 classes (kinds of critters):
e Bear

ekt CSE143 exirier simulation

e Tixon
e Tiger
* Husky (creative)

e All other classes
written for you

(ot ) [ wop ) [sten ) ( cebug )
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A Critter subclass

public class NAaMEe cxtcnds Crilbtter |

* extends Critter tells the simulator your class is a critter
e an example of inheritance

e Write a constructor to initialize each critter’s state

» Implement the 3 methods that define the critter’s behavior

e d 3
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How the simulator works

® CritterMain.java (written for you) makes a bunch of
critters and puts them randomly in the world.

» All you do is (un)comment-out relevant lines

* When you press "“start”, the simulator enters a loop:
 moves each animal once (getMove), in random order
* uses getColor and toString to display your critter

» Key concept: The simulator is in control, NOT your animal.

» Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

* Your animal must keep state (as fields) so that it can make
a single move, and know what moves to make later.
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Actions

Each critter is in some position facing some direction

Every getMove method returns an Action,
which is 1 of 4 constants:

Action.HOP: Forward 1 space (no effect if occupied or wall)
Action.LEFT: Turn 90-degrees counter-clockwise
Action.RIGHT: Turn 90-degrees clockwise

Action.INFECT: Infect critter in front of you (no effect if
no critter in front or your own species)
» Turns other critter into one of your species (!)

Copyright 2008 by Pearson Education



——

CritterInfo

* The argument to getMove is an object with methods that
provide lots of useful information:

» Neighbors: what is in front, behind, to left, and to right
« wall, nothing, same species, another species

» Direction: what way are you facing
« North, South, East, West

» Infection count: number of critters you have infected
« Only useful if trying for world domination (see the handout)

e But your critters will also need state (fields) to remember
enough about what they have done in the past

 Example need:

“Hop forward unless that is what I did on my last move”
« Example in section tomorrow
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Tournament

* Your Husky class can do whatever you want
» Some style points dedicated to creativity

e To win the tournament, must best “survive” in a world filled
with other species (your opponents)

» Details posted later

* "Playoffs” in class on last day

e d 7
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Example Critters

The code provided to you also includes two simple critters
» Yours will be more interesting

 Food: Stay in one place, easy to be infected
» Does try to infect others (rather unlike “food”)

* FlyTrap: Stay in one place, but spin around and always try
to infect

» A surprisingly good strategy

e d 8
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Critter exercise

* Write a critter class cougar (the dumbest of all animals):

Method Behavior

getMove Hop unless at wall then turn left
getColor |red

=0 e e o

A 9
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Ideas for state

* You must not only have the right state, but update that
state properly when relevant actions occur.

* Two approaches:
» How many moves of some sort has this animal made?
 What has this animal done recently?

(The first approach is often shorter.)

* Food, FlyTrap, and Cougar are too simple to need state.

SRR 10
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Testing critters

* Focus on one specific Critter of one specific type
» Only spawn 1 of each Critter type
» (Be sure to test with more later)

* Make sure your fields update properly
» Use println statements to see field values

* Look at the behavior one step at a time
» Use “step” rather than “start”

 Debug: Shows direction faced rather than normal String

e Example: Cougar without most other species

e 3 13
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Building Java Programs

Chapter 9
Lecture 9-3: Polymorphism

reading: 9.1-9.2
self-check: #5-9
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Polymorphism

 polymorphism: Ability for the same code to be used with
different types of objects.

 System.out.println can print any type of object.
« Each one displays in its own way on the console.

e CritterMain can interact with any type of critter.
- Each one moves, infects, etc. in its own way.

* Java supports polymorphism in a few ways
» We will learn about subtyping via inheritance

SRR 13
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Coding with polymorphism
* A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

* You can call any methods from Employee on ed.
* You cannot call any methods specific to Lawyer (e.g. sue).

* When a method is called on ed, it behaves as a Lawyer.

System.out.println (ed.getSalary()); // 40000.0
System.out.println (ed.getVacationForm()) ; // pink

SRR 14
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Polymorphism and parameters

* You can pass any subtype of a parameter's type.

public class EmployeeMain {

pubbrersbatyervordrmanirte v nrngvaedrs gy
Lawyer leslie = new Lawyer();
TechnicalWriter toby = new TechnicalWriter();

printInfo(leslie);
printInfo (toby) ; \\\\\\\\\\\\\\\\*
: -

public static void printInfo (Employee empl) ({

e i e A T e T e Vo e o) e e e e

System.out.println("days = " + empl.getVacationDays());

s hml =1 AN ol TAR o T it  aed 9 0 8 S B9 D R g (AL Ay s Nagh o A o f SV H o = Mt o rR i @ R gy 4 A A
(

A e e BHe s SRS G N

}

OUTPUT:

salary = 40000.0 salary = 40000.0
vacation days = 15 vacation days = 10
vacation form = pink vacation form = yellow

15
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Polymorphism and arrays

e Arrays of superclass types can store any subtype as elements.

ol s e e S R e
bl st at i e vetd matn i SEring i arasy
Employee[] e = { new Lawyer(), new TechnicalWriter(),
new Marketer (), new Lawyer() };

for (int 1 = 0; 1 < e.length; i++) {
Dl cn e s mninin I o 0 E el ] detSalar v
System.out.println("v.days: " + e[i].getVacationDays())
System.out.println () ;

}

Output:

salary: 40000.0
YT b B AT A0
salary: 40000.0
VA A Y He ol A
salary: 50000.0
e i e
salary: 40000.0
v.days: 15

16
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Polymorphism problems

* A few classes with inheritance relationships are shown.
» Can have multiple levels of subclasses

* A client program calls methods on objects of each class.

* You must read the code and determine the client's output.

* (On the final exam, at least a “simple” version)

A 17
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A polymorphism problem

* Assume that the following four classes have been declared:

pubrevelass v FRoo:H
bl revondamet oty
sSystemioubtiprintin Yoo dNys

}

SRR e e et e v ety e e,
S e R S L B e S R

}

pubi oSt ring oSt ring Gy
e sumb gt A oo A
}
}

Direrclas e v Banesrond g oo
public void method2 () {
SRV RN E Y s e b i e S P T T e A

}

g . - 18
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A polymorphism problem

public class Baz extends Foo {
SN R e O e DR e e s R e
SYStem-ountrprantln it haz e

}

pub e St ring oSt ring trvd
return "baz";

}
}

public class Mumble extends Baz {

e e e e A S e
SysStoemsontyprintln et mumb et

}
}

» What would be the output of the following client code?

Foo[] pity = {new Baz (), new Bar(), new Mumble(), new Foo()};
for (int 1 = 0; 1 < pity.length; i++) {

System.out.println (pity[1]);

pity[i] .methodl () ;

pity[i] .method2 () ;

System.out.println();
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e Include all inherited methods.

Foo
rmethiod fon 1
method2 fon 2
toString foo
Bar Baz
(methoc 1) foo 1 method1
rrethod har 2 (rmethad2)
(tostring fon toString
Mumble
(methoc )
method2
(tostring)
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Diagramming the classes

* Add classes from top (superclass) to bottom (subclass).

haz 1
foo 2
haz

haz 1
mumbhble 2
haz

20
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Finding output with tables

method Foo Bar Baz Mumble
jie = ad | e | Ttk ez baz 1
method? N bar 2 e mumble 2

ToString o e baz baz

s 21
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Polymorphism answer

T o e o B B e B R R e e
e I e e e T e s e
Svabemyonbyprintintprbylaclys
vty methodiG):
e M e Ve T e M
sSvsbemyonbiyperntTnil)s

)
e Qutput:

baz
ezl
foo 2

foo
foo
bar

N -

baz
Yozl
mumble 2

foo
Gl
foo 2

— 22
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A harder problem

* The order of the classes is jumbled up (easy).
* The methods sometimes call other methods (tricky!!)

public class Lamb extends Ham ({
R WP Aoy A B e A VR 1 3 0 O
System.out.print ("Lamb b s
}

}

pubcwekaseraiiama

S A et AT e A W Ao e A At
SRvsho=u oY b s e o el B e o
b();

}

public void b() {
System.out.print ("Ham b S

}

pubkicarStringnt oSt ring )yt
S AN LA AN S R

}

e 3 23
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Another problem 2

public class Spam extends Yam ({
e e
ST T A AV SR S IR IR N SRS R g o) R
}

}

public class Yam extends Lamb ({
publreraaniidiiaityy
System.out.print ("Yam a o

pablierSerringrrostring
R 3 S A 8 4 R A= R s
}

}
» What would be the output of the following client code?

T e G e R R e B B e oy e g Sl o T e
L £ 0 IAEALAY A\ A edre AT B U IR WA, Sy Ml o V0 BAMIRY Sh 01 0 Ml o C MR AL o0y oA Wi

System.out.println (food[i]) ;

food[i] .a();

System.out.println() ; // to end the line of output
food[i] .b() ;
System.out.println () ; // to end the line of output

SAVASH =y A Y BY A m AN o ntd i £ ) A
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Class diagram

Ham

al
b
toString)

Lamb

a(
b
fastring

Yam

ag
i}
toString

Spam

a()
- b
tostring()

s
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Polymorphism at work

e Lamb inherits Ham's a. a calls b. But Lamb overrides b...

publicrolass  Ham i

public void a() {
System.out.print ("Ham a Y
b();

}

pulbaeromdbbvd
System.out.print ("Ham b %
}

public String toString (]
SR ST SRR B BB

}
}

e e R e T
public void b() {
System.out.print("Lamb b i £
}

}

* Lamb's output from a:
Ham a Lamb b

— 26
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method Ham Lamb Yam Spam
a Ham a Ham a Yam a Yam a
b () b ()
b Ham b Lamb b Lamb b Spam b
RGNS A S e e KA R Ham Yam Yam
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The answer

A DR O e e S A e A R R e

S e i R e e
L e e )
food[1i].a();

: @) 6 A ITa e e o 0] )
System.out.println() ;
}

e Qutput:
Ham
Ham a Lamb b
Lamb b

Ham
Ham a Ham Db
Ham Db

Yam
Yam a
Shamah

Yam
Yam a
Lamb b
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i4++)

new Spam{(),

{

new Yam{() };
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