Building Java Programs

Chapter 9
Critters; Subtype Polymorphism

Reading: HW9 Handout, Chapter 9.2

~ Copyright 2008 by Pearson Education

L&

Critters

* A 2-D simulation world with animal objects with behavior:
* getMove what to do “on each turn”

» toString letter to display for this animal
*» getColor color to display for this animal

* You implement 4 classes (kinds of critters):
e Bear

ekt CSE143 exirier simulation

e Tixon
e Tiger
* Husky (creative)

e All other classes
written for you

(ot) [wop) [sten) (cebug)

~ " Copyright 2008 by Pearson Education

—
A Critter subclass

public class NAaMEe cxtcnds Crilbtter |

* extends Critter tells the simulator your class is a critter
e an example of inheritance

e Write a constructor to initialize each critter’s state

» Implement the 3 methods that define the critter’s behavior

e d 3
s Copyright 2008 by Pearson Education

et
et

How the simulator works

® CritterMain.java (written for you) makes a bunch of
critters and puts them randomly in the world.

» All you do is (un)comment-out relevant lines

* When you press "“start”, the simulator enters a loop:
 moves each animal once (getMove), in random order
* uses getColor and toString to display your critter

» Key concept: The simulator is in control, NOT your animal.

» Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

* Your animal must keep state (as fields) so that it can make
a single move, and know what moves to make later.

Copyright 2008 by Pearson Education

Actions

Each critter is in some position facing some direction

Every getMove method returns an Action,
which is 1 of 4 constants:

Action.HOP: Forward 1 space (no effect if occupied or wall)
Action.LEFT: Turn 90-degrees counter-clockwise
Action.RIGHT: Turn 90-degrees clockwise

Action.INFECT: Infect critter in front of you (no effect if
no critter in front or your own species)
» Turns other critter into one of your species (!)

Copyright 2008 by Pearson Education

——

CritterInfo

* The argument to getMove is an object with methods that
provide lots of useful information:

» Neighbors: what is in front, behind, to left, and to right
« wall, nothing, same species, another species

» Direction: what way are you facing
« North, South, East, West

» Infection count: number of critters you have infected
« Only useful if trying for world domination (see the handout)

e But your critters will also need state (fields) to remember
enough about what they have done in the past

 Example need:

“Hop forward unless that is what I did on my last move”
« Example in section tomorrow

Copyright 2008 by Pearson Education

-
/

——

Tournament

* Your Husky class can do whatever you want
» Some style points dedicated to creativity

e To win the tournament, must best “survive” in a world filled
with other species (your opponents)

» Details posted later

* "Playoffs” in class on last day

e d 7
' Copyright 2008 by Pearson Education

 ——
Example Critters

The code provided to you also includes two simple critters
» Yours will be more interesting

 Food: Stay in one place, easy to be infected
» Does try to infect others (rather unlike “food”)

* FlyTrap: Stay in one place, but spin around and always try
to infect

» A surprisingly good strategy

e d 8
' Copyright 2008 by Pearson Education

Critter exercise

* Write a critter class cougar (the dumbest of all animals):

Method Behavior

getMove Hop unless at wall then turn left
getColor |red

=0 e e o

A 9
Copyright 2008 by Pearson Education

-
/

Ideas for state

* You must not only have the right state, but update that
state properly when relevant actions occur.

* Two approaches:
» How many moves of some sort has this animal made?
 What has this animal done recently?

(The first approach is often shorter.)

* Food, FlyTrap, and Cougar are too simple to need state.

SRR 10
' Copyright 2008 by Pearson Education

A
et

Testing critters

* Focus on one specific Critter of one specific type
» Only spawn 1 of each Critter type
» (Be sure to test with more later)

* Make sure your fields update properly
» Use println statements to see field values

* Look at the behavior one step at a time
» Use “step” rather than “start”

 Debug: Shows direction faced rather than normal String

e Example: Cougar without most other species

e 3 13
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9
Lecture 9-3: Polymorphism

reading: 9.1-9.2
self-check: #5-9

~ Copyright 2008 by Pearson Education

R
/

Polymorphism

 polymorphism: Ability for the same code to be used with
different types of objects.

 System.out.println can print any type of object.
« Each one displays in its own way on the console.

e CritterMain can interact with any type of critter.
- Each one moves, infects, etc. in its own way.

* Java supports polymorphism in a few ways
» We will learn about subtyping via inheritance

SRR 13
' Copyright 2008 by Pearson Education

//

—

Coding with polymorphism
* A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

* You can call any methods from Employee on ed.
* You cannot call any methods specific to Lawyer (e.g. sue).

* When a method is called on ed, it behaves as a Lawyer.

System.out.println (ed.getSalary()); // 40000.0
System.out.println (ed.getVacationForm()) ; // pink

SRR 14
G Copyright 2008 by Pearson Education

//

’<;’;;’gﬁ—————’—~*————* .
Polymorphism and parameters

* You can pass any subtype of a parameter's type.

public class EmployeeMain {

pubbrersbatyervordrmanirte v nrngvaedrs gy
Lawyer leslie = new Lawyer();
TechnicalWriter toby = new TechnicalWriter();

printInfo(leslie);
printInfo (toby) ; *
: -

public static void printInfo (Employee empl) ({

e i e A T e T e Vo e o) e e e e

System.out.println("days = " + empl.getVacationDays());

s hml =1 AN ol TAR o T it aed 9 0 8 S B9 D R g (AL Ay s Nagh o A o f SV H o = Mt o rR i @ R gy 4 A A
(

A e e BHe s SRS G N

}

OUTPUT:

salary = 40000.0 salary = 40000.0
vacation days = 15 vacation days = 10
vacation form = pink vacation form = yellow

15
Copyright 2008 by Pearson Education

.,~é”’¢ﬁ§”i;/"

’fjjgﬁggg———_—’ﬂ————ww .
Polymorphism and arrays

e Arrays of superclass types can store any subtype as elements.

ol s e e S R e
bl st at i e vetd matn i SEring i arasy
Employee[] e = { new Lawyer(), new TechnicalWriter(),
new Marketer (), new Lawyer() };

for (int 1 = 0; 1 < e.length; i++) {
Dl cn e s mninin I o 0 E el] detSalar v
System.out.println("v.days: " + e[i].getVacationDays())
System.out.println () ;

}

Output:

salary: 40000.0
YT b B AT A0
salary: 40000.0
VA A Y He ol A
salary: 50000.0
e i e
salary: 40000.0
v.days: 15

16
Copyright 2008 by Pearson Education

Polymorphism problems

* A few classes with inheritance relationships are shown.
» Can have multiple levels of subclasses

* A client program calls methods on objects of each class.

* You must read the code and determine the client's output.

* (On the final exam, at least a “simple” version)

A 17
: Copyright 2008 by Pearson Education

//

 —
A polymorphism problem

* Assume that the following four classes have been declared:

pubrevelass v FRoo:H
bl revondamet oty
sSystemioubtiprintin Yoo dNys

}

SRR e e et e v ety e e,
S e R S L B e S R

}

pubi oSt ring oSt ring Gy
e sumb gt A oo A
}
}

Direrclas e v Banesrond g oo
public void method2 () {
SRV RN E Y s e b i e S P T T e A

}

g . - 18
s Copyright 2008 by Pearson Education

T
 —
A polymorphism problem

public class Baz extends Foo {
SN R e O e DR e e s R e
SYStem-ountrprantln it haz e

}

pub e St ring oSt ring trvd
return "baz";

}
}

public class Mumble extends Baz {

e e e e A S e
SysStoemsontyprintln et mumb et

}
}

» What would be the output of the following client code?

Foo[] pity = {new Baz (), new Bar(), new Mumble(), new Foo()};
for (int 1 = 0; 1 < pity.length; i++) {

System.out.println (pity[1]);

pity[i] .methodl () ;

pity[i] .method2 () ;

System.out.println();

Copyright 2008 by Pearson Education

T oo

——

e Include all inherited methods.

Foo
rmethiod fon 1
method2 fon 2
toString foo
Bar Baz
(methoc 1) foo 1 method1
rrethod har 2 (rmethad2)
(tostring fon toString
Mumble
(methoc)
method2
(tostring)

~ Copyright 2008 by Pearson Education

Diagramming the classes

* Add classes from top (superclass) to bottom (subclass).

haz 1
foo 2
haz

haz 1
mumbhble 2
haz

20

—

Finding output with tables

method Foo Bar Baz Mumble
jie = ad | e | Ttk ez baz 1
method? N bar 2 e mumble 2

ToString o e baz baz

s 21
Copyright 2008 by Pearson Education

e

 —
Polymorphism answer

T o e o B B e B R R e e
e I e e e T e s e
Svabemyonbyprintintprbylaclys
vty methodiG):
e M e Ve T e M
sSvsbemyonbiyperntTnil)s

)
e Qutput:

baz
ezl
foo 2

foo
foo
bar

N -

baz
Yozl
mumble 2

foo
Gl
foo 2

— 22
ke Copyright 2008 by Pearson Education

//

 —
A harder problem

* The order of the classes is jumbled up (easy).
* The methods sometimes call other methods (tricky!!)

public class Lamb extends Ham ({
R WP Aoy A B e A VR 1 3 0 O
System.out.print ("Lamb b s
}

}

pubcwekaseraiiama

S A et AT e A W Ao e A At
SRvsho=u oY b s e o el B e o
b();

}

public void b() {
System.out.print ("Ham b S

}

pubkicarStringnt oSt ring)yt
S AN LA AN S R

}

e 3 23
G Copyright 2008 by Pearson Education

//

—

Another problem 2

public class Spam extends Yam ({
e e
ST T A AV SR S IR IR N SRS R g o) R
}

}

public class Yam extends Lamb ({
publreraaniidiiaityy
System.out.print ("Yam a o

pablierSerringrrostring
R 3 S A 8 4 R A= R s
}

}
» What would be the output of the following client code?

T e G e R R e B B e oy e g Sl o T e
L £ 0 IAEALAY A\ A edre AT B U IR WA, Sy Ml o V0 BAMIRY Sh 01 0 Ml o C MR AL o0y oA Wi

System.out.println (food[i]) ;

food[i] .a();

System.out.println() ; // to end the line of output
food[i] .b() ;
System.out.println () ; // to end the line of output

SAVASH =y A Y BY A m AN o ntd i £) A

- 24
' Copyright 2008 by Pearson Education

Class diagram

Ham

al
b
toString)

Lamb

a(
b
fastring

Yam

ag
i}
toString

Spam

a()
- b
tostring()

s

___ Copyright 2008 by Pearson Education

//

 —
Polymorphism at work

e Lamb inherits Ham's a. a calls b. But Lamb overrides b...

publicrolass Ham i

public void a() {
System.out.print ("Ham a Y
b();

}

pulbaeromdbbvd
System.out.print ("Ham b %
}

public String toString (]
SR ST SRR B BB

}
}

e e R e T
public void b() {
System.out.print("Lamb b i £
}

}

* Lamb's output from a:
Ham a Lamb b

— 26
" Copyright 2008 by Pearson Education

method Ham Lamb Yam Spam
a Ham a Ham a Yam a Yam a
b () b ()
b Ham b Lamb b Lamb b Spam b
RGNS A S e e KA R Ham Yam Yam

Copyright 2008 by Pearson Education

S

——

The answer

A DR O e e S A e A R R e

S e i R e e
L e e)
food[1i].a();

: @) 6 A ITa e e o 0])
System.out.println() ;
}

e Qutput:
Ham
Ham a Lamb b
Lamb b

Ham
Ham a Ham Db
Ham Db

Yam
Yam a
Shamah

Yam
Yam a
Lamb b

~ Copyright 2008 by Pearson Education

i4++)

new Spam{(),

{

new Yam{() };

28

