
01-1

10/4/2002 (c) University of Washington 01-1

CSE 143 Java

Programming as Modeling

Reading: Ch. 1-6

10/4/2002 (c) University of Washington 01-2

10/4/2002 (c) University of Washington 01-3 10/4/2002 (c) University of Washington 01-4

Building Virtual Worlds
• Much of programming can be viewed as building a model of

a real or imaginary world in the computer
• a banking program models real banks
• a checkers program models a real game
• a fantasy game program models an imaginary world
• a word processor models an intelligent typewriter

• Running the program (the model) simulates what would
happen in the modeled world

• Often it's a lot easier or safer to build models than the real
thing
• Example: a tornado simulator

10/4/2002 (c) University of Washington 01-5

Java Tools for Modeling
• Classes in Java model things in the (real or imaginary) world

• Accounts

• Checkerboard, pieces, players
• Characters, monsters, obstacles, weapons, treasure, scores

• Documents, paragraphs, words, symbols, smart paper-clip

• A class describes a template for things;
an instance is a particular thing

• Constructors model ways to create new instances

• Methods model actions that these things can perform

• Messages (method calls) model requests from one thing to another
• Instance variables model the state or properties of things

10/4/2002 (c) University of Washington 01-6

What Makes a Good Model?
• Often, closer the model matches the (real or imaginary)

world, the better
• More likely it's an accurate model

• Easier for human readers of the program to understand what's going
on in the program

• Sometimes, a too detailed model of reality is not a good
thing. Why?

01-2

10/4/2002 (c) University of Washington 01-7

What Else Makes a Good Model?
• The easier the model is to extend & evolve, the better

• May want to extend the model...
• May need to change the model...

• Sad fact of life: “A Program is Never Finished”
• Why??

10/4/2002 (c) University of Washington 01-8

A Java Tool for Good Modeling

• One way to aid evolution is to define good interfaces
separate from the implementation

• An interface specifies to clients (users of the class) what are
the operations (methods) that can be invoked; anything else
in the class is hidden
• Clients get a simpler interface to learn

• Implementors protect their ability to change the implementation over
time without affecting clients

• In Java: public vs. private
• Instance variables should usually be private

10/4/2002 (c) University of Washington 01-9

Behavior vs. State

• An interface prescribes only behavior (methods, operations,
queries)

• The state (properties) are best left hidden
• hidden, or accessible only through methods

• Example: Bank accounts have balances
• Does this mean they must have a “balance” instance variable??

• Keeping behavior and state separate is an important aspect
of design
• important, and often difficult

10/4/2002 (c) University of Washington 01-10

Which is More Fundamental?
• Behavior or State?

• What do you think, and why?

10/4/2002 (c) University of Washington 01-11

The High vs. The Low
• Some aspects of system design are very high-level
• Yet… programming requires attention to low-level details
• This spectrum is one thing that makes our job hard

• hard, and interesting

10/4/2002 (c) University of Washington 01-12

A Review Example
/** A Bank Account */

public class BankAccount {
private double balance; // the current balance of the account
private String ownerName; // the name of the person who owns this account
private int accountNumber; // the account number of this account

/** Create a new bank account with a zero balance and a unique account number
@param ownerName the name of the person who owns this account */

public BankAccount(String ownerName) {
this.ownerName = ownerName;
this.balance = 0.0;
this.assignNewAccountNumber();

}

…

01-3

10/4/2002 (c) University of Washington 01-13

Bank Example (2)
…

/** Assign this account a new unique account number */

private void assignNewAccountNumber() {
this.accountNumber = …;

}

/** Return the current balance.
@return the current balance */

public double getBalance() {

return this.balance;
}

…

10/4/2002 (c) University of Washington 01-14

Bank Example (3)
…

/** Deposit into account.
@param amount the amount to deposit
@return whether or not the transaction was successful */

public boolean deposit(double amount) {
return this.updateBalance(amount);

}

/** Withdraw from account.
@param amount the amount to withdraw
@return whether or not the transaction was successful */

public boolean withdraw(double amount) {
return this.updateBalance(- amount);

}
…

10/4/2002 (c) University of Washington 01-15

Bank Example (4)
…
/** A helper method that adds its argument to the balance, if it doesn't cause overdraft.

@param amount the amount to add to the balance (negative to withdraw)
@return whether or not the transaction was successful */

private boolean updateBalance(double amount) {
if (this.balance + amount < 0) {
// don't change the balance, if this would overdraw it. print an error message instead.
System.out.println("Sorry, you don't have that much money to withdraw.");
return false;

} else {
// update the balance
this.balance = this.balance + amount;
return true;

}
}
…

10/4/2002 (c) University of Washington 01-16

A Recommended Practice for All Classes
A method with this signature:

Public String toString();

/** Compute a string representation of the account, e.g. for printing out */

public String toString() {
return "BankAccount#" + this.accountNumber +

" (owned by " + this.ownerName + "): current balance: " + this.balance;

}

10/4/2002 (c) University of Washington 01-17

toString
• Good while debugging

System.out.println(myObject.toString());

• Java treats toString in a special way
• In many cases, will automatically call toString when a String value is

needed:

System.out.println(myObject);

• Secret Java lore:
• All Objects in Java have a built-in, default toString method

• So why define your own??

10/4/2002 (c) University of Washington 01-18

Another Good Practice
• A static method in each class, just for testing it. No special name.

/** A method to test out some of the BankAccount operations */

public static void test() {
BankAccount myAccount = new BankAccount("Joe Bob");
myAccount.deposit(100.00);

myAccount.deposit(250.00);

myAccount.withdraw(50.00);

System.out.println(myAccount); // automatically calls myAccount.toString()

}

} // end of BankAccount

