
03-1

10/7/2002 (c) University of Washington 03-1

CSE 143 Java

Inheritance

Reading: Ch. 9, 14

10/7/2002 (c) University of Washington 03-2

Composition – "has a"
• Classes and objects can be related in several ways
• One way: composition, aggregation, or reference

• one object's instance variable refers to another object

• a “has-a” relation

• Simple example: objects representing people
public class Person {

private String name; // this person’s name

private Person mother; // this person’s mother
}

10/7/2002 (c) University of Washington 03-3

Specialization – "is a"
• Two classes &/or interfaces can be related via specialization

• one class/interface is a special kind of another class/interface

• Specialization relations can form classification hierarchies,
just as in the world that the classes are modeling
• cats and dogs are special kinds of mammals;

mammals and birds are special kinds of animals;
animals and plants are special kinds of living things

• lines and triangles are special kinds of polygons;
rectangles, ovals, and polygons are special kinds of shapes

• Specialization is not the same as composition
• A cat "is-an" animal vs. a cat "has-a" tail

10/7/2002 (c) University of Washington 03-4

Inheritance
• Java (and C++ and many other languages) provide direct

support for “is-a” relations

• class inheritance
• one class can inherit from another class,

meaning that it's is a special kind of the other

• Specializing class inherits all instance variables and methods
of the inherited class
• Can add additional methods and instance variables

• Can provide different versions of inherited methods

• Key concept for object-oriented programming

03-2

10/7/2002 (c) University of Washington 03-5

Interfaces vs. Class Inheritance

• An interface is a simple form of inheritance
• If B implements interface A, then B inherits the stuff in A

(which is nothing but the method signatures of B)
• If B extends class A, then B inherits the stuff in A (which can

include method code and instance variables)

10/7/2002 (c) University of Washington 03-6

A

B

A's stuff

B's stuff

A's stuff

B's stuff

10/7/2002 (c) University of Washington 03-7

Example: Representing Animals
• Generic Animal

public class Animal {
private int numLegs;

/** Return the number of legs */
public int getNumLegs() {

return this.numLegs;
}

/** Return the noise this animal makes */
public String noise() {

return "?";
}

}

10/7/2002 (c) University of Washington 03-8

Specific Animals
• Cats

public class Cat extends Animal {

// inherit numLegs and getNumLegs()

// additional inst. vars and methods

….

/** Return the noise a cat makes */

public String noise() {

return “meow";
}

}

• Dogs
public class Dog extends Animal {

// inherit numLegs and getNumLegs()

// additional inst. vars and methods

….

/** Return the noise a dog makes */

public String noise() {

return “WOOF!!";
}

}

03-3

10/7/2002 (c) University of Washington 03-9

Animal Animal's stuff

Cat
Animal's

stuff

Cat's stuff

Dog
Animals's

stuff

Dog's stuff

10/7/2002 (c) University of Washington 03-10

Vocabulary and Principles
• If class D extends/inherits from B

• B is called the superclass (sometimes called the base class)

• D is called the subclass (or derived class)

• Class D inherits all methods and fields from class B
• But not constructors or static methods or static fields

• Class D may contain additional (new) methods and fields
• But may not delete any

• Key fact: every object of type D is also an object of type B
• D can do anything that B can do (because of inheritance)

• D can be used in any context where a B object is appropriate

10/7/2002 (c) University of Washington 03-11

Method Overriding
• If class D extends B, class D may provide an alternative,

replacement implementation of any method it would
otherwise inherit from B
• The definition in D is said to override the definition in B

• An overriding method cannot change the number of
arguments or their types, or the type of the result [why?]
• can only provide a different body

• Cannot override an instance variable

10/7/2002 (c) University of Washington 03-12

Polymorphism
• Polymorphic: "having many forms"
• A variable that can refer to objects of different types is said

to be polymorphic
• Methods with polymorphic arguments are also said to be

polymorphic
public void speak(Animal a) {

System.out.println(a.noise());
}

• Polymorphic methods can be reused for many types

03-4

10/7/2002 (c) University of Washington 03-13

Static and Dynamic Types
• With polymorphism, we can distinguish between

• Static type: the declared type of the variable (fixed during execution)
• Dynamic type: the run-time class of the object the variable currently refers to (can

change as program executes)

public void speak(Animal a) {

System.out.println(a.noise());

}

Cat foofoo = new Cat();

speak(foofoo);

Dog fido = new Dog();

speak(fido);

10/7/2002 (c) University of Washington 03-14

Method Lookup & Dynamic Dispatch
• When a message is sent to an object, the right method to invoke is the

one in the most specific class that the object is an instance of
• Makes sure that method overriding always has an effect

• Method lookup (a.k.a. dynamic dispatch) algorithm:
• Start with the run-time class of the receiver object (not the static type!)
• Search that class for a matching method
• If one is found, invoke it

• Otherwise, go to the superclass, and continue searching

• Example:
Animal a = new Cat();

System.out.println(a.noise());

a = new Dog();
System.out.println(a.getNumLegs());

10/7/2002 (c) University of Washington 03-15

Summary
• Object-oriented programming is huge

• Lots of new concepts and terms

• Lots of new programming and modeling power

• Ideas (so far!)
• Composition ("has a") vs. specialization ("is a")

• Inheritance

• Method overriding
• Polymorphism, static vs. dynamic types

• Method lookup, dynamic dispatch

