
04-1

10/11/2002 (c) University of Washington 04-1

CSE 143 Java

Inheritance Example

10/11/2002 (c) University of Washington 04-2

Example Domain: Bank Accounts

• We want to model different kinds of bank accounts
• A plain bank account: standard account information (name, account

#, balance)

• a savings account: like a generic bank account, but it also earns
interest when balance is above some minimum

• a checking account: like a generic bank account, but it also is
charged a fee if the balance dips below some minimum amount

• How should we program this?

10/11/2002 (c) University of Washington 04-3

Option 1: Three Separate Classes
• BankAccount class

• The code we already saw

• SavingsAccount class
• Copy the BankAccount code, and add a creditInterest method

• CheckingAccount class
• Copy the BankAccount code, and add a deductFees method

• This is what we'd have to do in a non-OO language

• But is a poor solution in an OO language
• Why?

10/11/2002 (c) University of Washington 04-4

Option 2: Introduce a Common Interface
• BankAccount interface defines the common operations of all

accounts
public interface BankAccount {

public double getBalance();
public boolean deposit(double amount);
public boolean withdraw(double amount);

}

• Each kind of account implements this interface
public class RegularAccount implements BankAccount { … }
public class SavingsAccount implements BankAccount { … }
public class CheckingAccount implements BankAccount { … }

• What are the strengths of this approach? weaknesses?

04-2

10/11/2002 (c) University of Washington 04-5

Option 3: Use Inheritance
• Observation: SavingsAccount is a lot like RegularAccount; it

just adds some things, and makes a few other changes
• Idea: define SavingsAccount not by itself, but rather by first

inheriting from RegularAccount and then making some small
extensions

public class SavingsAccount extends RegularAccount {
// inherits all of RegularAccount's instance variables and methods

// now write whatever's different about SavingsAccount here
…

}

• Likewise for CheckingAccount

10/11/2002 (c) University of Washington 04-6

Class SavingsAccount (1)
• Class declaration and instance variables

public class SavingsAccount extends RegularAccount {

// inherit balance, ownerName, and accountNumber from RegularAccount

// additional instance variables

private double interestRate; // interest rate; 0.05 means 5%
private double minBalance; // minimum account balance to receive interest

…

10/11/2002 (c) University of Washington 04-7

Class SavingsAccount (2)
• Constructor [reminder: constructors are not inherited]

public SavingsAccount(String name, double interestRate, double minBalance) {
// initialize inherited instance variables (copied from superclass constructor)

this.ownerName = name;
this.balance = 0.0;
this.assignNewAccountNumber();
// initialize new instance variables

this.interestRate = interestRate;
this.minBalance = minBalance;

}

• Doesn't compile!
• Private instance variables can't be accessed, even in subclasses

10/11/2002 (c) University of Washington 04-8

Member Access in Subclasses
• public: accessible anywhere the class can be accessed
• private: accessible only inside the same class

• Does not include subclasses – derived classes have no special
permissions

• A new mode: protected
accessible inside the defining class and all its subclasses
• Use protected for "internal" things that subclasses also may need to

access
• Consider this carefully – often better to keep private data private

and provide appropriate (protected) set/get methods

04-3

10/11/2002 (c) University of Washington 04-9

Using Protected
• If we had declared the RegularAccount instance variables protected,

instead of private, then this constructor would now compile
public SavingsAccount(String name, double interestRate, double minBalance) {

// initialize inherited instance variables (copied from superclass constructor)
this.ownerName = name;
this.balance = 0.0;
this.assignNewAccountNumber();
// initialize new instance variables
this.interestRate = interestRate;
this.minBalance = minBalance;

}

• But it's still poor code [why?]

10/11/2002 (c) University of Washington 04-10

Super

• If a subclass constructor wants to call a superclass constructor, it can do that using
the syntax

super(<possibly empty list of argument expressions>)

as the first thing in the subclass constructor's body

public SavingsAccount(String name, double interestRate, double minBalance) {
// initialize inherited instance variables
super(name); // invokes RegularAccount(String) constructor
// initialize new instance variables
this.interestRate = interestRate;
this.minBalance = minBalance;

}

• Good practice to always have a super(…) at the start of a subclass's constructor

10/11/2002 (c) University of Washington 04-11

Class SavingsAccount (3)
• Inherit methods from RegularAccount

// getBalance(), deposit(), withdraw() inherited

• Add a new method

/** Credit interest if current account balance is sufficient */
public void creditInterest() {

if (this.balance >= this.minBalance) {
this.deposit(this.balance * this.interestRate);

}
}

10/11/2002 (c) University of Washington 04-12

Overriding a Method
• Override toString for SavingsAccount

/** Return a string representation of this SavingsAccount */

public String toString() {
return "SavingsAccount#" + this.accountNumber +

" (owned by " + this.ownerName +
"): current balance: " + this.balance +
"; interest rate: " + this.interestRate;

}

• Done!
} // end SavingsAccount

04-4

10/11/2002 (c) University of Washington 04-13

Class CheckingAccount (1)
public class CheckingAccount extends BankAccount {

// new instance variables
protected double lowBalance; // lowest balance since account created or

// last service charge was deducted

/** Create a new checking account */
public CheckingAccount(String name, double initialBalance){

super(name);
this.balance = initialBalance;

this.lowBalance = this.balance;
}

10/11/2002 (c) University of Washington 04-14

Class CheckingAccount (2)
• Add a new method to deduct a service charge if the account

minimum balance went too low

/** Deduct a service charge if the account balance went too low */
public void deductFees(double minBalance, double serviceCharge){

if (this.lowBalance < minBalance) {
this.withdraw(serviceCharge);

}

// reset low balance to current balance
lowBalance = this.balance;

}

10/11/2002 (c) University of Washington 04-15

Class CheckingAccount (3)
• Override the updateBalance method (assuming it is protected, not

private) to keep track of the low balance
protected boolean updateBalance(double amount) {

if (this.balance + amount < 0) {
return false;

} else {
this.balance = this.balance + amount;
if (this.balance < this.lowBalance) {

this.lowBalance = this.balance;
}
return true;

}
}

• But this is a poor approach! [Why?]

10/11/2002 (c) University of Washington 04-16

Super
• New use for super: in any subclass, super.msg(args) can be

used to call the version of the method in the superclass,
even if it has been overridden in the subclass
• Can be done anywhere in the code – does not need to be at the

beginning of the calling method

protected boolean updateBalance(double amount) {
boolean OK = super.updateBalance(amount);
if (this.balance < this.lowBalance) {

this.lowBalance = this.balance;
}
return OK;

}

04-5

10/11/2002 (c) University of Washington 04-17

Example
• Consider this example:

CheckingAccount a1 = new CheckingAccount("George", 250.00);
boolean OK = a1.withdraw(100.00);

• What happens, from when the message is sent, to when it
finally returns an answer?

10/11/2002 (c) University of Washington 04-18

Summary
• Main idea: use inheritance to reuse existing similar classes

• Better modeling

• Supports writing polymorphic code

• Avoids code duplication

• Other ideas:
• Use protected rather than private for things that might be needed

by subclasses

• Use overriding to make changes to superclass methods

• Use super in constructors and methods to reuse superclass
operations

