
05b-1

10/16/2002 (c) University of Washington 05b-1

CSE 143 Java

Shape Case Study

10/16/2002 (c) University of Washington 05b-2

interface Shape
• Some operations:

public int getX(); public int getY();
public int getCenterX(); public int getCenterY();

public int getWidth(); public int getHeight();
public void moveBy(int deltaX, int deltaY);
public void moveTo(int x, int y);
public void addTo(GWindow gw);

public void removeFromWindow();
public Rectangle getBoundingBox();
public boolean intersects(Shape other);
public void paint(Graphics g);

10/16/2002 (c) University of Washington 05b-3

abstract class ShapeImpl implements Shape
• Provide default implementation of as many methods of

Shape as possible
• Can override in subclasses if they have a better way to do it
• Leave others abstract, but can still call them by other non-abstract

methods

• Include default representation (instance variables) to support
those implementations
• Cannot override in subclasses, so must be careful!

• If ShapeImpl isn't right for some implementor of Shape, they
can always go it alone, and just implement Shape but not
extend ShapeImpl

10/16/2002 (c) University of Washington 05b-4

Coordinate-based Methods
• Lots of operations relate to the X, Y, width, & height of the shape

• Can define these in terms of the bounding box of the shape
// public abstract Rectangle getBoundingBox(); // inherited from Shape

public int getX() { return getBoundingBox().getX(); }
public int getY() { return getBoundingBox().getY(); }

public int getWidth() { return getBoundingBox().getWidth(); }

public int getHeight() { return getBoundingBox().getHeight(); }
// do intersects as an exercise….

• Then can compute center coordinates from these methods
public int getCenterX() { return getX() + getWidth()/2; }
public int getCenterY() { return getY() + getHeight()/2; }

• All subclasses have to do is implement getBoundingBox(), inherit the
rest "for free"

05b-2

10/16/2002 (c) University of Washington 05b-5

Implementing getBoundingBox()
• Right now, ShapeImpl stores the bounding box as an

instance variable, and implements getBoundingBox()
protected Rectangle boundingBox; // set in subclass constructors
public Rectangle getBoundingBox() { return boundingBox; }

• What are the advantages of this? disadvantages?

10/16/2002 (c) University of Washington 05b-6

Moving Shapes
• Shapes should implement moveBy and moveTo
• But we can implement one in terms of the other (and getX()

and getY())
• One design:

// public abstract void moveTo(int x, int y); // inherited from Shape

public void moveBy(int deltaX, int deltaY) {
moveTo(getX() + deltaX, getY() + deltaY());

}

• Now clients only implement moveTo, inherit moveBy "for
free"

10/16/2002 (c) University of Washington 05b-7

Moving Bounding Boxes
• If we move a shape, then we need to move its bounding box,

too

• Provide a default implementation of moveTo that does the
bounding box updates

• Subclasses extend this implementation to also move the real
shape, if necessary

public void moveTo(int x, int y) {

getBoundingBox().moveTo(x, y);
}

10/16/2002 (c) University of Washington 05b-8

For Subclasses To Do
• ShapeImpl doesn't implement the following:

public abstract void paint(Graphics g);

• Subclasses should override moveTo, if they need to

• Subclasses should provide constructors
• Subclasses should implement toString

05b-3

10/16/2002 (c) University of Washington 05b-9

abstract class PolyShape extends ShapeImpl
• An abstract class for all shapes represented with a list of

vertices

• Provides a constructor, an addPoint method, a paint method,
a toString method

• Overrides moveTo:
public void moveTo(int x, int y) {

… a lot of code to move each of the vertices …
super.moveTo(x, y); // do the ShapeImpl code

}

• Concrete subclasses Polygon, Triangle, and Line are just
constructor and toString!

10/16/2002 (c) University of Washington 05b-10

concrete class Rectangle extends ShapeImpl
• Stores x, y, width, and height values directly

protected int x; …

• Rectangle is its own bounding box
public Rectangle(…) {

…
this.boundingBox = this;

}

• Must override all operations that would have referenced
boundingBox to instead do some real work

public void getX() { return x; }

…

