
07-1

10/16/2002 (c) University of Washington 07-1

CSE 143 Java

Errors and Exceptions

Reading: Ch. 18

10/16/2002 (c) University of Washington 07-2

What Can Go Wrong With Programs?
• Programs can have bugs and try to do things they shouldn't.

E.g. try to send a message to null

• Users can ask for things that they shouldn't (we can't control the
user).

E.g. try to withdraw too much money from a bank account

• The environment may not be able to provide some resource that is
needed

Program runs out of memory or disk space
Expected file is not found

Extreme network examples:
Thousands to millions of tiny sensors
Interplanetary Internet

10/16/2002 (c) University of Washington 07-3

Coping Strategies

• Check all user input! (Not doing this has led to many insecurities.)
But what should the program do if it's wrong?

• Be able to test whether resources were unavailable.
But what should the program do if they weren't?

• Other strategies?

10/16/2002 (c) University of Washington 07-4

Reporting Errors
• If a method cannot complete properly because of some problem, how

can it report it to the rest of the program?
• One common approach: return an error code

• A boolean flag: true means OK, false means failure
• An integer flag: 0 means OK, 1 means error of kind #1, etc.

• Easy to program, in the method that detects the error
boolean methodThatMightFail(…) {

… if (weirdErrorCondition()) { return false; }
… return true;

}

• But this is bothersome for callers and unreliable. [Why?]

07-2

10/16/2002 (c) University of Washington 07-5

The Original BankAccount
• Part of the original design of the bank account operations:

public boolean deposit (double amount) { return this.updateBalance(amount); }

public boolean withdraw(double amount) { return this.updateBalance(-amount); }

private boolean updateBalance(double amount) {

if (this.balance + amount < 0) {

System.out.println("Sorry, you don't have that much money to withdraw.");
return false;

} else {

this.balance = this.balance + amount;
return true;

}

}

• What's bad about using this boolean error flag (plus a println)?

10/16/2002 (c) University of Washington 07-6

An Alternative: Using Exceptions
• Java (and C++, and many other higher-level languages)

include exceptions as a better way to report and check for
errors

• If something bad happens, can throw an exception
• Exceptions are objects of certain classes in Java

• Thrown exceptions abort the throwing method, and its caller,
and so on, until a handler is found that catches the
exception
• The handler knows how to cope with the exception

10/16/2002 (c) University of Washington 07-7

Revised BankAccount Methods
public void deposit (double amount) { this.updateBalance(amount); }
public void withdraw(double amount) { this.updateBalance(-amount); }
private void updateBalance(double amount) {
if (this.balance + amount < 0) {

throw new IllegalArgumentException("insufficient funds");
} else {

this.balance = this.balance + amount;
}

}

• All have void return type, not boolean
• Error message and "return false" replaced with throw of new exception

object
• Callers can chose to ignore the exception, if they don't know how to

cope with it
• It will be passed on to the caller's caller, and so on, to some caller that can cope

10/16/2002 (c) University of Washington 07-8

Exception Objects
• Exceptions are regular objects in Java
• Exception classes subclasses of the predefined Throwable

class
• Some predefined Java exception classes:

• RuntimeException (a very generic kind of exception)
• NullPointerException
• IndexOutOfBoundsException
• ArithmeticException (e.g. for divide by zero)
• IllegalArgumentException (for any other kind of bad argument)

• Most exceptions have constructors that take a String
argument

07-3

10/16/2002 (c) University of Washington 07-9

Throw Statement
• To throw an exception object, use a throw statement

• Syntax pattern:
throw <expression whose type is some subclass of Throwable> ;

• Throw is like return: it ends execution of the containing
method

• But it doesn't just return to the caller, but ends execution of
the caller, and its caller, and so on, until a handler is found
(explained later), or the whole program is terminated
• It's bad style for a complete program to die with an unhandled

exception

10/16/2002 (c) University of Washington 07-10

Handling Exceptions
• If a caller knows how to cope with an exception, then it can

specify an appropriate handler using a try-catch block
try {

mySavingsAccount.withdraw(100.00);
myCheckingAccount.deposit(100.00);

} catch (IllegalArgumentException exn) {
System.out.println("Transaction failed: " + exn.getMessage());

}

• If an exception is thrown anywhere inside the body of the try
block, that is an instance of IllegalArgumentException or a
subclass, then the exception is caught and the catch block is
run

10/16/2002 (c) University of Washington 07-11

Try-Catch Blocks: Syntax
• Syntax:

try {
<body, a sequence of statements>

}
catch (<exception type1> <name1>) {

<handler1, a sequence of statements>
}
catch (<exception type2> <name2>) {

<handler2, a sequence of statements>
}
…

• Can have one or more catch clauses for a single try block

10/16/2002 (c) University of Washington 07-12

Try-Catch Blocks: Semantics
• First evaluate <body>
• If no exception thrown during evaluation of body, or all exceptions that

are thrown are already handled somewhere inside body, then we're
done with the try-catch block; skip the catch blocks

• Otherwise, if an exception is thrown and not handled, then check each
catch block in turn

• See if the exception is an instance of <exception type1>
• If so, then the exception is caught:

Bind <name1> to the exception; execute <handler1>; skip remaining catch blocks and go
to the code after the try-catch block

• If not, then continue checking with the next catch block (if any)

• If no catch block handles the exception, then continue searching for a
handler, e.g. by exiting the containing method and searching the caller
for a try-catch block surrounding the call

07-4

10/16/2002 (c) University of Washington 07-13

Example
• Implement a robust transferTo method on BankAccount,

coping properly with errors that might arise
public class BankAccount {

…
public void transferTo(BankAccount otherAccount, double amount) {

