
10-1

10/28/2002 (c) University of Washington 10-1

CSE 143 Java

Specifications: Programming by Contract

Reading: Ch. 7, 8-8.2

10/28/2002 (c) University of Washington 10-2

Interfaces
• Clients and implementors of an abstraction (e.g. a method or

a class) agree on the interface

• A contract between the two parties
• Gives rights and responsibilities of each, to their mutual benefit

• "Interface" usually refers to the agreed-upon types of
arguments and results and the possibly thrown exceptions
• Compliance enforced by Java's compile-time typechecker

• But this isn't a complete contract!

10/28/2002 (c) University of Washington 10-3

Specifications
• A specification is a (more) complete contract, that should

include
• any restrictions on the allowed argument values

[A constraint on the client, assumed by the implementor]

• what the return value must be, in terms of the argument values
[A constraint on the implementor, assumed by the client]

• any changes in state that might happen, and when
[A constraint on the implementor, assumed by the client]

• when any exceptions might be thrown (more on that later)
[A constraint on the implementor, assumed by the client]

• Example: a deposit method on a BankAccount object

10/28/2002 (c) University of Washington 10-4

Preconditions and Postconditions
• Two particularly common types of specifications are preconditions

and postconditions
• Precondition: something that must be true before a method/constructor

can be called
• A constraint on the client (the caller)
• Assumed true by the method implementation

• Postcondition: something that is guaranteed to be true after the
method/constructor terminates execution

• A constraint on the implementor

• Assumed to be true by the client

• A postcondition is guaranteed only if the preconditions were true when
method was called

10-2

10/28/2002 (c) University of Washington 10-5

Examples
• What would be reasonable preconditions for

a square root function?

a method to add a new item into a set?
A method to find the earliest date on a file?

• What would be reasonable postconditions for

a square root function?
a method to add a new item into a set?
A method to find the earliest date on a file?

10/28/2002 (c) University of Washington 10-6

Invariants
• An invariant is a condition that must be true at a particular

point in a program

• Preconditions and postconditions are examples of invariants
• But there are invariants which are neither pre- nor post-

conditions

10/28/2002 (c) University of Washington 10-7

Class Invariants
• Special case: a class invariant – something that is always true for

each instance of the class, at least as seen from the outside
• Class invariants express requirements on the values or relationships

of instance variables
If employee.jobcode “Programmer”, then employee.salary > $50,000
0 <= this.size <= this.capacity
The list data is stored in this.elements[0..this.size-1]

• A class invariant might not hold while a method is in the middle of
updating related variables, but it must always be true by the time a
constructor or method terminates

• Any class invariant is automatically:
• A postcondition of every constructor and method of that class
• A precondition of every method

10/28/2002 (c) University of Washington 10-8

Writing Bug-Free Software
• Invariants, including pre- and post- conditions, are

incredibly useful in design and understanding
• Program bugs can often be seen as unforeseen cases of

invariants being violated
• In principle:

• If you could write down all invariants, and have them checked as
the program runs, bugs would practically disappear

• In reality:
1. Writing down all invariants is tedious to impossible
2. Java gives little direct support for documenting and checking

invariants
The situation is similar in most common languages

10-3

10/28/2002 (c) University of Washington 10-9

Suggested Practice
• Include all non-trivial invariants as comments in the code

(use @param, @return, @throws comments if appropriate)
These are essential parts of the design
If you don’t write them down, the reader (who may be you) will have to
reconstruct them as best he/she can

• Whenever you update a variable, double-check any
invariants that mention it to be sure the invariant still holds

May need to update related variables to make this happen
May need to add preconditions (e.g. no negative deposits) or explicit checks (e.g.
for overdraft) to ensure they hold
Helps to write the code for you!

10/28/2002 (c) University of Washington 10-10

Dealing With Precondition Failures
• Should preconditions be checked?

• In an ideal world, no: if all clients satisfy their preconditions, no
implementations would need to check them

• In a world where programs have bugs: maybe we should
Prefer programs that crash right away when a problem happens (controversial!)

• Who is responsible for checking?
• Most logical place is at the beginning of the called method

• How aggressive should we be about checking?
• If check all preconditions, can clutter up code

• Focus on checking preconditions that wouldn't crash already, and
that would lead to obscure behavior if they weren't detected

10/28/2002 (c) University of Washington 10-11

What if a Precondition is not True?
• Goal: to force immediate termination
• Reason: the contract has been broken
• Throw a RuntimeException

• Since these exceptions shouldn't ever be thrown, and clients
shouldn't expect to handle them, they shouldn't be listed in throws
clauses

• Not possible to handle the exception to produce some different
output or clean-up operation

• Write error messages to System.out or System.err?
• Might help you during debug
• Of marginal help in a production environment

Neither you nor the client may have access to the console window

10/28/2002 (c) University of Washington 10-12

Assertions – New Feature of Java 1.4
• Long-time feature of C/C++
• Idea: at any point in the code where some condition should hold, we

can write this type of statement:
assert <boolean expression>;

• If <boolean expression> is true, execution continues normally
• If false, execution stops with an error, or drops into a debugger, …

• Asserts can be disabled without removing them from the source code
• Means there is no performance penalty for production code

• Guideline: use aggressively for consistency checking
• Powerful development tool; helps code to crash early
• Use to check all types of invariants, not just preconditions

• Unfortunately, not all invariants can be expressed by simple Boolean
conditions.

10-4

10/28/2002 (c) University of Washington 10-13

Invariants and Inheritance
• When methods are overriden

• preconditions can be weakened in overriding methods

• postconditions can be strengthened

• Class invariants can be strengthened (since the class itself is
ensuring they are respected), or even changed arbitrarily, as
long as inherited methods still have proper preconditions met
when they're called and inheriting code only assumes
inherited postconditions are true

