

Comparing Algorithms • Example: We've seen two different list implementations • Dynamic expanding array • Linked list • Which is "better"? • How do we measure? •Stopwatch? Why or why not?

Program Efficiency \& Resources

- Goal: Find way to measure "resource" usage in a way that is independent of particular machines/implementations
- Resources
- Execution time
- Execution space
- Network bandwidth
- others
- We will focus on execution time
- Basic techniques/vocabulary apply to other resource measures
 14.5

Analysis of Execution Time

1. First: describe the size of the problem in terms of one or more parameters

- For sum, size of array makes sense
- Often size of data structure, but can be magnitude of some numeric parameter, etc.

2. Then, count the number of steps needed as a function of the problem size

- Need to define what a "step" is.
- First approximation: one simple statement
- More complex statements will be multiple steps

2/5/2003	(0) 2001.203, Univestity of Yustington	14.7

25.2003 (1) 2001.2033, Uniesesity of Yosshington $\quad 14.7$

Cost of operations: Constant Time Ops

- Constant-time operations: each take one abstract time "step"
- Simple variable declaration/initialization (double sum = 0.0;)
- Assignment of numeric or reference values (var = value;)
- Arithmetic operation (+, -, *, /, \%)
- Array subscripting (a[index])
- Simple conditional tests (x < y, p != null)
- Operator new itself (not including constructor cost) Note: new takes significantly longer than simple arithmetic or assignment, but its cost is independent of the problem we're trying to analyze
- Note: watch out for things like method calls or constructor invocations that look simple, but are expensive

Cost of operations: Zero-time Ops

- Compiler can sometimes pay the whole cost of setting up operations
- Nothing left to do at runtime
- Variable declarations without initialization double[] overdratts;
- Variable declarations with compile-time constant initializers static final int maxButtons $=3$;
- Casts (of reference types, at least)
... (Double) checkBalance

21,52003 (t) 2001. 2003, University of Washinglon 14.9
2.5:52003 (4) 2001. 2003, Univerity of Wastinglon 114.10

Conditional Statements

- The two branches of an if-statement might take different times. What to do??
if (condition) \{
S1;
\}else \{
S2;
\}
- Hint: Depends on analysis goals
- "Worst case": the longest it could possibly take, under any circumstances
- "Average case": the expected or average number of steps
- "Best case": the shortest possible number of steps, under some special circumstance
- Generally, worst case is most important to analyze

2/512003
(c) 2001 -2033, Uniestity of Wostinglon
14.11

Analyzing Loops

- Basic analysis

1. Calculate cost of each iteration
2. Calculate number of iterations
3. Total cost is the product of these

Caution -- sometimes need to add up the costs differently if cost of each iteration is not roughly the same

- Nested loops
- Total cost is number of iterations or the outer loop times the cost of the inner loop
- same caution as above

Function Calls
- Cost for calling a function is cost of... cost of evaluating the arguments (constant or non-constant) + cost of actually calling the function (constant overhead) + cost of passing each parameter (normally constant time in Java for both numeric and reference values) + cost of executing the function body (constant or non-constant?) System.out.print(this.lineNumber); System.out.println("Answer is " + Math.sqrt(3.14159));
25.52008

Exercise	
- Analyze the running time of printMultTable - Pick the problem size - Count the number of steps ```// print multiplication table with // n rows and columns void printMultTable(int n) { for (int k=0; k <=n; k++) { printRow(k, n); } }```	```// print row r with length n of a multiplication table void printRow(int r, int n) { for (int k= 0; k<=r; k++) { System.out.print(r*k + " "); } System.out.println(); }```
2/5,2003 (1)	ingon 14.15

Comparing Algorithms

- Suppose we analyze two algorithms and get these times (numbers of steps):
- Algorithm 1: $37 n+2 n^{2}+120$
- Algorithm 2: $50 n+42$

How do we compare these? What really matters?

- Answer: In the long run, the thing that is most interesting is the cost as the problem size n gets large
- What are the costs for $n=10, n=100 ; n=1,000 ; n=1,000,000$?
- Computers are so fast that how long it takes to solve small problems is rarely of interest

2;/52003
(1) 2001.203 , Univesility of Wastington
14.16

Orders of Growth					
- Examples:					
N	$\log _{2} \mathrm{~N}$	5N	N $\log _{2} \mathrm{~N}$	N^{2}	2^{N}
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	$\sim 10^{9}$
64	6	320	384	4096	$\sim 10^{19}$
128	7	640	896	16384	$\sim 10^{38}$
256	8	1280	2048	65536	$\sim 10^{76}$
10000	13	50000	10^{5}	10^{8}	$\sim 10^{3010}$
2/5,2003		(1200	.03, Univesisty of Wostingon		14.17

Asymptotic Complexity
- Asymptotic: Behavior of complexity function as problem size gets large - Only thing that really matters is higher-order term - Can drop low order terms and constants - The asymptotic complexity gives us a (partial) way to answer "which algorithm is more efficient" - Algorithm 1: $37 n+2 n^{2}+120$ is proportional to n^{2} - Algorithm 2: $50 n+42$ is proportional to n - Graphs of functions are handy tool for comparing asymptotic behavior

Big-O Notation
- Definition: If $f(n)$ and $g(n)$ are two complexity functions, we say that $f(n)=0(g(n)) \quad($ pronounced $f(n)$ is $O(g(n))$ or is order $g(n))$ if there is a constant c such that $f(n) \leq c \bullet g(n)$ for all sufficiently large n

Exercises
•Prove that $5 n+3$ is $\mathrm{O}(\mathrm{n})$
- Prove that $5 n^{2}+42 n+17$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Implications

- The notation $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is not an equality
- Think of it as shorthand for
- "(n) grows at most like $\mathrm{g}(\mathrm{n})$ " or
- "f grows no faster than g" or
- "4 is bounded by g"
- O () notation is a worst-case analysis
- Generally useful in practice
- Sometimes want average-case or expected-time analysis if worstcase behavior is not typical (but often harder to analyze)

25:2003 14. 1420

Complexity Classes

- Several common complexity classes (problem size n)
- Constant time: $\quad \mathrm{O}(\mathrm{k})$ or $\mathrm{O}(1)$
- Logarithmic time: O(log n) [Base doesn't matter. Why?]
- Linear time: $\quad O(n)$
- "n $\log n$ " time: $\quad O(n \log n)$
- Quadratic time: $\quad 0\left(n^{2}\right)$
- Cubic time: $\quad 0\left(n^{3}\right)$
- Exponential time: $\quad \mathrm{O}\left(\mathrm{k}^{n}\right)$
- $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ is often called polynomial time
2.552003 (4) 2001. 2003, Univesity of Wastinglon 14.22

Rule of Thumb

- If the algorithm has polynomial time or better: practical
- typical pattern: examining all data, a fixed number of times
- If the algorithm has exponential time: impractical
- typical pattern: examine all combinations of data
- What to do if the algorithm is exponential?
- Try to find a different algorithm
- Some problems can be proved not to have a polynomial solution
- Other problems don't have known polynomial solutions, despite years of study and effort.
- Sometimes you settle for an approximation

The correct answer most of the time, or
An almost-correct answer all of the time

Big-O Arithmetic

- Memorize complexity classes in order from smallest to largest: $O(1), O(\log n), O(n), O(n \log n), O\left(n^{2}\right)$, etc.
- Ignore constant factors
$300 n+5 n^{4}+6+2^{n}=0\left(n+n^{4}+2^{n}\right)$
- Ignore all but highest order term
$O\left(n+n^{4}+2^{n}\right)=O\left(2^{n}\right)$

Analyzing List Operations (1)		
-We can use O () notation to compare the costs of different list implementations		
- Operation - Construct	Dynamic Array	Linked List
- Size of the		
- isEmpty		
- clear		
${ }^{25} 52008$		${ }^{14.5}$

Analyzing List Operations (2)		
- Operation - Add item - Locate it - Add or re has been	Dynamic Array indexOf)	Linked List
2/52003	(1) 2001-2003, University of Wathiglon	14.26

Wait! ISn't this totally bogus??
•Write better code!!
• More clever hacking in the inner loops
(assembly language, special-purpose hardware in extreme cases)
• Moore's law: Speeds double every 18 months
• Wait and buy a faster computer in a year or two!
• But ...

How long is a Computer-Day?

- If a program needs $f(\mathrm{n})$ microseconds to solve some problem, what is the largest single problem it can solve in one full day?
- One day $=1,000,000^{*} 24^{*} 60^{*} 60=10^{6 *} 24^{*} 36^{*} 10^{2}=10^{6} * 25^{*} 36^{*} 10^{2}=$ $10^{6} \times 900^{*} 10^{2}=9 * 10^{9}$
- To calculate, set $f(n)=9^{*} 10^{9}$ and solve for n in each case

$$
f(n) \quad n \text { such that } f(n)=\text { one day }
$$

$$
\mathrm{n} \quad 9 * 10^{10}
$$

$$
5 \mathrm{n} \quad 2.5 * 10^{10}
$$

$$
\mathrm{n} \log _{2} \mathrm{n} \quad 3 * 10^{9}
$$

$\mathrm{n}^{2} \quad 3$ * 10
$\quad 4 * 10^{3}$
$2^{\mathrm{n}}-36$

2/5:2003
1.203 , University of Wastington

Speed Up The Computer by 1,000,000

- Suppose technology advances so that a future computer is $1,000,000$ fast than today's.
- In one day there are now $=9 * 10^{9 *} 10^{3}$ ticks available
- To calculate, set $f(n)=9^{*} 10^{9+3}$ and solve for n in each case
$\mathrm{f}(\mathrm{n})$
original n for one day new n for one day

How Much Does 1,000,000-faster Buy?

- Divide the new max n by the old max n, to see how much more we can do in a day

$\mathrm{f}(\mathrm{n})$	n for 1 day	million x, n for 1 day
n	9×10^{10}	million times larger
5n	2×10^{10}	million times larger
n $\log _{2} \mathrm{n}$	3×10^{9}	60,000 times larger
n^{2}	3×10^{5}	1,000 times larger
n^{3}	4×10^{3}	100 times larger
$2^{\text {n }}$	36	+20 larger
2152003	(c) 2001.2	Wastinglon 14.30

Practical Advice For Speed Lovers

- First pick the right algorithm and data structure
- Implement it carefully, insuring correctness
- Then optimize for speed - but only where it matters

Constants do matter in the real world
Clever coding can speed things up, but result can be harder to read, modify

- Current state-of-the-art approach: Use measurement tools to find hotspots, then tweak those spots.
"Premature optimization is the root of all evil" - Donald Knuth

Computer Science Note

- Algorithmic complexity theory is one of the key intellectual contributions of Computer Science
- Typical problems
- What is the worst/average/best-case performance of an algorithm?
-What is the best complexity bound for all algorithms that solve a particular problem?
- Interesting and (in many cases) complex, sophisticated math
- Probabilistic and statistical as well as discrete
- Still some key open problems
- Most notorious: P ? $=\mathrm{NP}$

2/5/2003
(1) 2001 -2003, Univesisity of Wstrington $\quad 14.34$

