
14-1

2/5/2003 (c) 2001-2003, University of Washington 14-1

CSE 143 Java

Program Efficiency &
Introduction to Complexity Theory

2/5/2003 (c) 2001-2003, University of Washington 14-2

GREAT IDEAS IN COMPUTER GREAT IDEAS IN COMPUTER GREAT IDEAS IN COMPUTER GREAT IDEAS IN COMPUTER
SCIENCESCIENCESCIENCESCIENCE

ANALYSIS OF ALGORITHMIC COMPLEXITY

2/5/2003 (c) 2001-2003, University of Washington 14-3

Overview
• Topics

• Measuring time and space used by algorithms

• Machine-independent measurements

• Costs of operations

• Comparing algorithms
• Asymptotic complexity – O() notation and complexity classes

• Reading:
• Textbook: Ch. 21

2/5/2003 (c) 2001-2003, University of Washington 14-4

Comparing Algorithms
• Example: We’ve seen two different list implementations

• Dynamic expanding array

• Linked list

• Which is “better”?
• How do we measure?

• Stopwatch? Why or why not?

14-2

2/5/2003 (c) 2001-2003, University of Washington 14-5

Program Efficiency & Resources
• Goal: Find way to measure "resource" usage in a way that is

independent of particular machines/implementations

• Resources
• Execution time

• Execution space

• Network bandwidth

• others

• We will focus on execution time
• Basic techniques/vocabulary apply to other resource measures

2/5/2003 (c) 2001-2003, University of Washington 14-6

Example
• What is the running time of the following method?

// Return the sum of the elements in array.
double sum(double[] rainMeas) {

double ans = 0.0;
for (int k = 0; k < rainMeas.length; k++) {

ans = ans + rainMeas[k];
}

return ans;
}

• How do we analyze this?

2/5/2003 (c) 2001-2003, University of Washington 14-7

Analysis of Execution Time
1. First: describe the size of the problem in terms of one or

more parameters
• For sum, size of array makes sense

• Often size of data structure, but can be magnitude of some
numeric parameter, etc.

2. Then, count the number of steps needed as a function of
the problem size

• Need to define what a "step" is.
• First approximation: one simple statement

• More complex statements will be multiple steps

2/5/2003 (c) 2001-2003, University of Washington 14-8

Cost of operations: Constant Time Ops
• Constant-time operations: each take one abstract time “step”

• Simple variable declaration/initialization (double sum = 0.0;)

• Assignment of numeric or reference values (var = value;)

• Arithmetic operation (+, -, *, /, %)

• Array subscripting (a[index])
• Simple conditional tests (x < y, p != null)

• Operator new itself (not including constructor cost)
Note: new takes significantly longer than simple arithmetic or assignment, but its
cost is independent of the problem we’re trying to analyze

• Note: watch out for things like method calls or constructor
invocations that look simple, but are expensive

14-3

2/5/2003 (c) 2001-2003, University of Washington 14-9

Cost of operations: Zero-time Ops
• Compiler can sometimes pay the whole cost of setting up

operations
• Nothing left to do at runtime

• Variable declarations without initialization
double[] overdrafts;

• Variable declarations with compile-time constant initializers
static final int maxButtons = 3;

• Casts (of reference types, at least)
... (Double) checkBalance

2/5/2003 (c) 2001-2003, University of Washington 14-10

Sequences of Statements
• Cost of

S1; S2; … Sn

is sum of the costs of S1 + S2 + … + Sn

2/5/2003 (c) 2001-2003, University of Washington 14-11

Conditional Statements
• The two branches of an if-statement might take different times. What

to do??
if (condition) {

S1;
} else {

S2;
}

• Hint: Depends on analysis goals
• "Worst case": the longest it could possibly take, under any circumstances
• "Average case": the expected or average number of steps
• "Best case": the shortest possible number of steps, under some special

circumstance

• Generally, worst case is most important to analyze

2/5/2003 (c) 2001-2003, University of Washington 14-12

Analyzing Loops
• Basic analysis

1. Calculate cost of each iteration

2. Calculate number of iterations

3. Total cost is the product of these
Caution -- sometimes need to add up the costs differently if cost of each iteration

is not roughly the same

• Nested loops
• Total cost is number of iterations or the outer loop times the cost

of the inner loop
• same caution as above

14-4

2/5/2003 (c) 2001-2003, University of Washington 14-13

Function Calls
• Cost for calling a function is cost of...

cost of evaluating the arguments (constant or non-constant)

+ cost of actually calling the function (constant overhead)

+ cost of passing each parameter (normally constant time in Java for
both numeric and reference values)

+ cost of executing the function body (constant or non-constant?)

System.out.print(this.lineNumber);

System.out.println("Answer is " + Math.sqrt(3.14159));

2/5/2003 (c) 2001-2003, University of Washington 14-14

Exact Complexity Function

• Careful analysis of an algorithm leads to an algebraic
formula

• The "exact complexity function" gives the number of steps as
a function of the problem size

• Graphs are a good tool to illustrate complexity functions

2/5/2003 (c) 2001-2003, University of Washington 14-15

Exercise
• Analyze the running time of

printMultTable
• Pick the problem size
• Count the number of steps

// print multiplication table with

// n rows and columns

void printMultTable(int n) {
for (int k=0; k <=n; k++) {

printRow(k, n);

}
}

// print row r with length n of a
multiplication table

void printRow(int r, int n) {

for (int k = 0; k <= r; k++) {
System.out.print(r*k + “ ”);

}

System.out.println();
}

2/5/2003 (c) 2001-2003, University of Washington 14-16

Comparing Algorithms
• Suppose we analyze two algorithms and get these times

(numbers of steps):
• Algorithm 1: 37n + 2n2 + 120

• Algorithm 2: 50n + 42

How do we compare these? What really matters?
• Answer: In the long run, the thing that is most interesting is

the cost as the problem size n gets large
• What are the costs for n=10, n=100; n=1,000; n=1,000,000?
• Computers are so fast that how long it takes to solve small problems

is rarely of interest

14-5

2/5/2003 (c) 2001-2003, University of Washington 14-17

Orders of Growth
• Examples:

N log2N 5N N log2N N2 2N

===

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

2/5/2003 (c) 2001-2003, University of Washington 14-18

Asymptotic Complexity
• Asymptotic: Behavior of complexity function as problem size

gets large
• Only thing that really matters is higher-order term

• Can drop low order terms and constants

• The asymptotic complexity gives us a (partial) way to answer
“which algorithm is more efficient”
• Algorithm 1: 37n + 2n2 + 120 is proportional to n2

• Algorithm 2: 50n + 42 is proportional to n

• Graphs of functions are handy tool for comparing asymptotic
behavior

2/5/2003 (c) 2001-2003, University of Washington 14-19

Big-O Notation
• Definition: If f(n) and g(n) are two complexity functions, we

say that
f(n) = O(g(n)) (pronounced f(n) is O(g(n)) or is order g(n))

if there is a constant c such that
f(n) ≤ c • g(n)

for all sufficiently large n

2/5/2003 (c) 2001-2003, University of Washington 14-20

Exercises
• Prove that 5n+3 is O(n)

• Prove that 5n2 + 42n + 17 is O(n2)

14-6

2/5/2003 (c) 2001-2003, University of Washington 14-21

Implications
• The notation f(n) = O(g(n)) is not an equality
• Think of it as shorthand for

• “f(n) grows at most like g(n)” or

• “f grows no faster than g” or
• “f is bounded by g”

• O() notation is a worst-case analysis
• Generally useful in practice

• Sometimes want average-case or expected-time analysis if worst-
case behavior is not typical (but often harder to analyze)

2/5/2003 (c) 2001-2003, University of Washington 14-22

Complexity Classes
• Several common complexity classes (problem size n)

• Constant time: O(k) or O(1)

• Logarithmic time: O(log n) [Base doesn’t matter. Why?]

• Linear time: O(n)

• “n log n” time: O(n log n)
• Quadratic time: O(n2)

• Cubic time: O(n3)
…

• Exponential time: O(kn)

• O(nk) is often called polynomial time

2/5/2003 (c) 2001-2003, University of Washington 14-23

Rule of Thumb
• If the algorithm has polynomial time or better: practical

• typical pattern: examining all data, a fixed number of times

• If the algorithm has exponential time: impractical
• typical pattern: examine all combinations of data

• What to do if the algorithm is exponential?
• Try to find a different algorithm
• Some problems can be proved not to have a polynomial solution
• Other problems don't have known polynomial solutions, despite

years of study and effort.
• Sometimes you settle for an approximation:

The correct answer most of the time, or
An almost-correct answer all of the time

2/5/2003 (c) 2001-2003, University of Washington 14-24

Big-O Arithmetic
• Memorize complexity classes in order from smallest to

largest: O(1), O(log n), O(n), O(n log n), O(n2), etc.

• Ignore constant factors
300n + 5n4 + 6 + 2n = O(n + n4 + 2n)

• Ignore all but highest order term
O(n + n4 + 2n) = O(2n)

14-7

2/5/2003 (c) 2001-2003, University of Washington 14-25

Analyzing List Operations (1)
• We can use O() notation to compare the costs of different

list implementations

• Operation Dynamic Array Linked List
• Construct empty list

• Size of the list

• isEmpty

• clear

2/5/2003 (c) 2001-2003, University of Washington 14-26

Analyzing List Operations (2)
• Operation Dynamic Array Linked List

• Add item to end of list

• Locate item (contains, indexOf)

• Add or remove item once it
has been located

2/5/2003 (c) 2001-2003, University of Washington 14-27

Wait! Isn’t this totally bogus??
• Write better code!!

• More clever hacking in the inner loops
(assembly language, special-purpose hardware in extreme cases)

• Moore’s law: Speeds double every 18 months
• Wait and buy a faster computer in a year or two!

• But …
2/5/2003 (c) 2001-2003, University of Washington 14-28

How long is a Computer-Day?
• If a program needs f(n) microseconds to solve some problem, what is

the largest single problem it can solve in one full day?
• One day = 1,000,000*24*60*60 = 106*24*36*102 = 106*25*36*102 =

106*900*102 = 9*109

• To calculate, set f(n) = 9*109 and solve for n in each case

f(n) n such that f(n) = one day

n 9 * 1010

5n 2.5 * 1010

n log2n 3 * 109

n2 3 * 105

n3 4 * 103

2n 36

14-8

2/5/2003 (c) 2001-2003, University of Washington 14-29

Speed Up The Computer by 1,000,000

• Suppose technology advances so that a future computer is 1,000,000
fast than today's.

• In one day there are now = 9*109*103 ticks available
• To calculate, set f(n) = 9*109+3 and solve for n in each case

f(n) original n for one day new n for one day

--
n 9 * 1010 ??????????

5n 2.5 * 1010 ??????????

n log2n 3 * 109 etc.

n2 3 * 105

n3 4 * 103

2n 36

2/5/2003 (c) 2001-2003, University of Washington 14-30

How Much Does 1,000,000-faster Buy?

• Divide the new max n by the old max n, to see how much more we can
do in a day

f(n) n for 1 day million x, n for 1 day

n 9 x 1010 million times larger

5n 2 x 1010 million times larger

n log2n 3 x 109 60,000 times larger

n2 3 x 105 1,000 times larger

n3 4 x 103 100 times larger

2n 36 +20 larger

2/5/2003 (c) 2001-2003, University of Washington 14-31

Practical Advice For Speed Lovers
• First pick the right algorithm and data structure

• Implement it carefully, insuring correctness

• Then optimize for speed – but only where it matters
Constants do matter in the real world
Clever coding can speed things up, but result can be harder to read, modify

• Current state-of-the-art approach: Use measurement tools to
find hotspots, then tweak those spots.

“Premature optimization is the root of all evil” – Donald Knuth

2/5/2003 (c) 2001-2003, University of Washington 14-32

"It is easier to make a "It is easier to make a "It is easier to make a "It is easier to make a
correct program efficient correct program efficient correct program efficient correct program efficient

than to make an efficient than to make an efficient than to make an efficient than to make an efficient
program correct"program correct"program correct"program correct"

-- Edsgar Dijkstra

14-9

2/5/2003 (c) 2001-2003, University of Washington 14-33

Summary
• Analyze algorithm sufficiently to determine complexity
• Compare algorithms by comparing asymptotic complexity
• For large problems an asymptotically faster algorithm will

always trump clever coding tricks

�Premature optimization is the root of all evil��Premature optimization is the root of all evil��Premature optimization is the root of all evil��Premature optimization is the root of all evil�

� Donald Knuth

2/5/2003 (c) 2001-2003, University of Washington 14-34

Computer Science Note
• Algorithmic complexity theory is one of the key intellectual

contributions of Computer Science

• Typical problems
• What is the worst/average/best-case performance of an algorithm?

• What is the best complexity bound for all algorithms that solve a
particular problem?

• Interesting and (in many cases) complex, sophisticated math
• Probabilistic and statistical as well as discrete

• Still some key open problems
• Most notorious: P ?= NP

