
16-1

11/18/2002 (c) 2001, University of Washington 16-1

CSE 143 Java

Searching, Recursion, and Sorting

11/18/2002 (c) 2001, University of Washington 16-2

Overview
• Topics

• Maintaining an ordered list

• Sequential and binary search

• Recursion

• Sorting: insertion sort and QuickSort

• Reading
• Textbook: ch. 13 & sec. 17.1-17.3

11/18/2002 (c) 2001, University of Washington 16-3

New Problem: A Word Dictionary
• Suppose we want to maintain a real dictionary. Data is a list

of <word, definition> pairs -- a "Map" structure
<“aardvark”, “an animal that starts with an A and ends with a Kt”>
<“apple”, “a leading product of Washington state”>
<“banana”, “a fruit imported from somewhere else”>
etc.

• We want to be able to do the following operations efficiently
• Look up a definition given a word (key)

• Retrieve sequences of definitions in alphabetical order

11/18/2002 (c) 2001, University of Washington 16-4

Representation
• Need to pick a data structure
• Analyze possibilities based on cost of operations

search access next in order

• unordered list

• hash map

• ?

16-2

11/18/2002 (c) 2001, University of Washington 16-5

Ordered List
• One solution: keep list in alphabetical order
• To simplify the diagrams, we’ll treat the list as an array of

strings, and assume it has sufficient capacity to add
additional word/def's when needed

0 aardvark // instance variable of the Ordered List class
1 apple String[] words; // list is stored in words[0..size-1]
2 banana int size; // # of words
3 cherry

4 kumquat
5 orange
6 pear
7 rutabaga

11/18/2002 (c) 2001, University of Washington 16-6

Sequential (Linear) Search
• Assuming the list is initialized in alphabetical order, we can

use a linear search to locate a word
// return location of word in words, or –1 if found
int find(String word) {

int k = 0;
while (k < size && !word.equals(words[k]) {

k++
}
if (k < size) { return k; } else { return –1; } // lousy indenting to fit on slide

} // don’t do this at home

• Time for list of size n:

11/18/2002 (c) 2001, University of Washington 16-7

Can we do better?
• Yes! (If array is sorted)
• Binary search:

• Examine middle element

• Search either left or right half depending on whether desired word
precedes or follows middle word alphabetically

11/18/2002 (c) 2001, University of Washington 16-8

Binary Search
// Return location of word in words, or –1 if not found
int find(String word) {

return bSearch(0, size-1);
}
// Return location of word in words[lo..hi] or –1 if not found
int bSearch(String word, int lo, int hi) {

// return –1 if interval lo..hi is empty
if (lo > hi) { return –1; }
// search words[lo..hi]
int mid = (lo + hi) / 2;
int comp = word.compareTo(words[mid]);
if (comp == 0) { return mid; }
else if (comp < 0) { return _________________________ ; }
else /* comp > 0 */ { return _________________________ ; }

}

16-3

11/18/2002 (c) 2001, University of Washington 16-9

Binary Search -- Detail of Last Lines
int comp = word.compareTo(words[mid]);

if (comp == 0) {
//the word must be where? _______________
return _________________ ;

}

else if (comp < 0) {
//the word must be where? _____________
return _________________________ ;

}

else { //comp > 0
//the word must be where? _____________
return _________________________ ;

}

11/18/2002 (c) 2001, University of Washington 16-10

Binary Search -- Detail of Last Lines
int comp = word.compareTo(words[mid]);

if (comp == 0) {
//the word must be where? at position "mid"
return _________________ ;

}

else if (comp < 0) {
//the word must be where? in the lower half of the array
return _________________________ ;

}

else { //comp > 0
//the word must be where? in the upper half of the array
return _________________________ ;

}

11/18/2002 (c) 2001, University of Washington 16-11

Binary Search -- Detail of Last Lines
int comp = word.compareTo(words[mid]);
if (comp == 0) {

//the word must be where? at position "mid"
return mid;

}
else if (comp < 0) {

//the word must be where? in the lower half of the array
return /*the result of searching the lower half of the array*/
_________________________ ;

}
else { //comp > 0

//the word must be where? in the upper half of the array
return /*the result of searching the upper half of the array*/
_________________________ ;

}

11/18/2002 (c) 2001, University of Washington 16-12

What is "The Lower Half"?
... else if (comp < 0) {

//the word must be where? in the lower half of the array
return /*the result of searching the lower half of the array*/

_________________________ ;
}

...

Remember the method header was:
// Return location of word in words[lo..hi] or –1 if not found
int bSearch(String word, int lo, int hi) {

So the lower half starts at _____ and ends at ______
return /*the result of searching the lower half of the array*/ becomes
return /*the result of searching the array from ___ to ___*/

16-4

11/18/2002 (c) 2001, University of Washington 16-13

Last Lines --Comments Complete
int comp = word.compareTo(words[mid]);
if (comp == 0) {

//the word must be where? at position "mid"
return mid;

}
else if (comp < 0) {

//the word must be where? in the lower half of the array
return /*the result of searching from lo to mid-1*/

_________________________ ;
}
else { //comp > 0

//the word must be where? in the upper half of the array
return /*the result of searching from mid+1 to hi*/

_________________________ ;
}

11/18/2002 (c) 2001, University of Washington 16-14

Last Piece of the Puzzle
...

return /*the result of searching from lo to mid-1*/
_________________________ ;

}

How can we get the "result of searching from lo to mid-1"?

We have a method called bSearch that can search an array within a range of indexes.

// Return location of word in words[x.y] or –1 if not found
int bSearch(String word, int x, int y)

Let x be lo, let y be mid-1

bSearch(String word, int lo, int mid-1)

11/18/2002 (c) 2001, University of Washington 16-15

Recursion
• A function that calls itself is recursive
• Nothing really new here
• Function call review:

• Evaluate argument expressions

• Allocate space for parameters and local variables of function being
called

• Initialize parameters with argument values

• Then execute the function body

• No difference if the function being called is the same one
that is doing the calling

11/18/2002 (c) 2001, University of Washington 16-16

Trace
• Trace execution of find(“orange”)

0 aardvark
1 apple

2 banana
3 cherry
4 kumquat
5 orange

6 pear
7 rutabaga

16-5

11/18/2002 (c) 2001, University of Washington 16-17

Trace
• Trace execution of find(“kiwi”)

0 aardvark
1 apple

2 banana
3 cherry
4 kumquat
5 orange

6 pear
7 rutabaga

11/18/2002 (c) 2001, University of Washington 16-18

Recursive Definitions
• A recursive function needs two things to work properly

• One or more base cases that are not recursive
if (lo > hi) { return –1; }
if (comp == 0) { return mid; }

• One or more recursive cases that handle a “smaller” instance of the
problem

else if (comp < 0) { return bsearch(word,lo,mid-1); }

else /* comp > 0 */ { return bsearch(word,mid+1,hi); }

"Smaller" means: closer to a base case
Without "smaller", what might happen?

11/18/2002 (c) 2001, University of Washington 16-19

Performance of Binary Search
• Analysis

• Time of each recursive call:

• Number of recursive calls:

• Total time:

• Compare to linear search
• Time to search 10, 100, 1000, 1,000,000 words

linear

binary

• What is incremental cost if size of list is doubled?

11/18/2002 (c) 2001, University of Washington 16-20

Sorting
• Binary search is a huge speedup over sequential search

• But requires the list be sorted

• Slight Problem: How do we get a sorted list?
• Maintain the list in sorted order as each word is added
• Sort the entire list when needed

16-6

11/18/2002 (c) 2001, University of Washington 16-21

Insert for a Sorted List
• Exercise: Assume that words[0..size-1] is sorted. Place new word in

correct location so modified list remains sorted
• Assume that there is spare capacity for the new word (what kind of condition is

this?)

• Before coding:
• Draw pictures of an example situation, before and after
• Write down the postconditions for the operation

// given existing list words[0..size-1], insert word in correct place and increase size
void insertWord(String word) {

size++;
}

11/18/2002 (c) 2001, University of Washington 16-22

Insertion Sort
• Once we have insertWord working...
• We can sort a list in place by repeating the insertion

operation
void insertionSort() {

int finalSize = size;
size = 1;

for (int k = 1; k < finalSize; k++) {
insertWord(words[k]);

}

}

11/18/2002 (c) 2001, University of Washington 16-23

Insertion Sort Trace
• Initial array contents

0 pear
1 orange

2 apple
3 rutabaga
4 aardvark
5 cherry

6 banana
7 kumquat

11/18/2002 (c) 2001, University of Washington 16-24

Insertion Sort Performance
• Cost of each insertWord operation:

• Number of times insertWord is executed:

• Total cost:

• Can we do better?

16-7

11/18/2002 (c) 2001, University of Washington 16-25

Analysis
• Why was binary search so much more effective than

sequential search?
• Answer: binary search divided the search space in half each time;

sequential search only reduced the search space by 1 item

• Why is insertion sort O(n2)?
• Each insert operation only gets 1 more item in place at cost O(n)

• O(n) insert operations

• Can we do something similar for sorting?

11/18/2002 (c) 2001, University of Washington 16-26

Divide and Conquer Sorting
• Idea: like binary search, divide the sorting problem into two

subproblems; recursively sort each subproblem; combine
results
• Want division and combination at the end to be fast
• Want to be able to sort two halves independently

• This is a particular example of an algorithm technique known
as “divide and conquer”

11/18/2002 (c) 2001, University of Washington 16-27

Quicksort
• Invented by C. A. R. Hoare (1962)
• Idea

• Pick an element of the list: the pivot

• Place all elements of the list smaller than the pivot in the half of the
list to its left; place larger elements to the right

• Recursively sort each of the halves

• Before looking at any code, see if you can draw pictures
based just on the first two steps of the description

11/18/2002 (c) 2001, University of Washington 16-28

Code for Quicksort
// Sort words[0..size-1]

void quickSort() {
qsort(0, size-1);

}

// Sort words[lo..hi]
void qsort(int lo, int hi) {

// quit if empty partition
if (lo > hi) { return; }

int pivotLocation = partition(lo, hi); // partition array and return pivot loc
qsort(lo, pivotLocation-1);
qsort(pivotLocation+1, hi);

}

16-8

11/18/2002 (c) 2001, University of Washington 16-29

Recursion Analysis
• Base case? Yes.

// quit if empty partition
if (lo > hi) { return; }

• Recursive cases? Yes
qsort(lo, pivotLocation-1);
qsort(pivotLocation+1, hi);

• Observation: recursive cases work on a smaller subproblem, so
algorithm will terminate

11/18/2002 (c) 2001, University of Washington 16-30

A Small Matter of Programming
• Partition function

• Pick pivot

• Rearrange array so all smaller element are to the left, all larger to
the right, with pivot in the middle

• How do we pick the pivot?
• For now, keep it simple – use the first item in the interval

11/18/2002 (c) 2001, University of Washington 16-31

Partition design
• We need to partition words[lo..hi]
• Pick words[lo] as the pivot
• Picture:

11/18/2002 (c) 2001, University of Washington 16-32

Partition Algorithm
// Partition words[lo..hi]; return location of pivot in range lo..hi

int partition(int lo, int hi)

16-9

11/18/2002 (c) 2001, University of Washington 16-33

Partition Test
• Check: partition(0,7)

0 orange
1 pear

2 apple
3 rutabaga
4 aardvark
5 cherry

6 banana
7 kumquat

11/18/2002 (c) 2001, University of Washington 16-34

Quicksort Performance
• Cost of each recursive call

• Cost of partition = O(n) where n is the size of the part of the list
being sorted (a smaller part of the original array)

• Some O(1) work

• Number of recursive calls
• Assume that each partition operation divides list in half at cost

O(n/2)
• How many recursive calls?

11/18/2002 (c) 2001, University of Washington 16-35

Quicksort Performance (Ideal Case)
• Each partition divides the list parts in half

• Sublist sizes on recursive calls: n, n/2, n/4, n/8….

• Total depth of recursion: __________________

• Total work at each level: O(n)

• Total cost of quicksort: ________________ !

• For a list of 10,000 items
• Insertion sort: O(n2): 100,000,000

• Quicksort: O(n log n): 10,000 log2 10,000 = 132,877

11/18/2002 (c) 2001, University of Washington 16-36

Quicksort Performance (Worst Case)
• Each partition manages to pick the largest or smallest item in

the list as a pivot
• Sublist sizes on recursive calls:

• Total depth of recursion: __________________
• Total work at each level: O(n)

• Total cost of quicksort: ________________ !

16-10

11/18/2002 (c) 2001, University of Washington 16-37

Worst Case vs Average Case
• In practice, Quicksort works well, provided the pivot is picked

with some care. Some strategies:
• Compare a small number of list items (3-5) and pick the median for

the pivot

• Pick a pivot element randomly in the range lo..hi

11/18/2002 (c) 2001, University of Washington 16-38

Summary
• Recursion

• Functions that call themselves to solve subproblems

• Need base case(s) and recursive case(s)

• Often a very clean way to formulate a problem (let the function call
mechanism handle bookkeeping behind the scenes)

• Divide and Conquer
• Algorithm design strategy that exploits recursion

• Divide original problem into subproblems

• Solve each subproblem recursively
• Can sometimes yield dramatic performance improvements

