

The definition	on of a tree is naturally recursive:
A tree is eit	her null,
	or data + left (sub-)tree + right (sub-)tree
Base case	s)?
Recursive	case(s)?
Given a rec a very natur • Don't fight	ursively defined data structure, recursion is often al technique for algorithms on that data structure t!

- Functions like subtreeSize systematically "visit" each node in a tree
 - This is called a traversal
 - ${\mbox{\cdot}}$ We also used this word in connection with lists
- Traversal is a common pattern in many algorithms
 The processing done during the "visit" varies with the algorithm
- What order should nodes be visited in?
- Many are possible

12/16/2002

• Three have been singled out as particularly useful for binary trees: preorder, postorder, and inorder

15-14

(c) 1997-2002 University of Washington

Traversals	
reorder traversal:	
"Visit" the (current) node first	
i.e., do what ever processing is to be done	
Then, (recursively) do preorder traversal on its children, left to right	
ostorder traversal:	
First, (recursively) do postorder traversals of children, left to right	
Visit the node itself last	
order traversal:	
(Recursively) do inorder traversal of left child	
Then visit the (current) node	
Then (recursively) do inorder traversal of right child	
Footnote: pre- and postorder make sense for all trees; inorder only for binary trees	

Another Challenge: remove

- Algorithm: find the node containing the element value being removed, and remove that node from the tree
- Removing a leaf node is easy: replace with an empty tree
- Removing a node with only one non-empty subtree is easy: replace with that subtree
- · How to remove a node that has two non-empty subtrees?
- · Need to pick a new element to be the new root node, and adjust at least one of the subtrees
- · E.g., remove the largest element of the left subtree (will be one of the easy cases described above), make that the new root

(c) 1997-2002 University of Washington

12/16/2002

15-35

Analysis of Binary Search Tree · Cost of operations is proportional to height of tree • Best case: tree is balanced · Depth of all leaf nodes is roughly the same • Height of a balanced tree with *n* nodes is ~log₂ *n* · If tree is unbalanced, height can be as bad as the number of nodes in the tree Tree becomes just a linear list 12/16/2002

(c) 1997-2002 University of Washington

15-36

Summary

• A binary search tree is a good general implementation of a set, if the elements can be ordered

- Both contains and add benefit from divide-and-conquer strategy
- No sliding needed for add
- Good properties depend on the tree being roughly balanced
- Open issues (or, why take a data structures course?)
 - How are other operations implemented (e.g. iterator, remove)?
 - Can you keep the tree balanced as items are added and removed?

15-37

(c) 1997-2002 University of Washington

12/16/2002