
15-1

12/16/2002 (c) 1997-2002 University of Washington 15-1

CSE 143 Java

Trees

12/16/2002 (c) 1997-2002 University of Washington 15-2

Overview
• Topics

• Trees: Definitions and terminology

• Binary trees

• Tree traversals

• Binary search trees
• Applications of BSTs

12/16/2002 (c) 1997-2002 University of Washington 15-3

Trees
• Most of the structures we’ve looked at so far are linear

• Arrays

• Linked lists

• There are many examples of structures that are not linear,
e.g. hierarchical structures
• Organization charts

• Book contents (chapters, sections, paragraphs)
• Class inheritance diagrams

• Trees can be used to represent hierarchical structures

12/16/2002 (c) 1997-2002 University of Washington 15-4

Looking Ahead To An Old Goal
• Finding algorithms and data structures for fast searching

• A key goal

• Sorted arrays are faster than unsorted arrays, for searching
Can use binary search algorithm

Not so easy to keep the array in order

• LinkedLists were faster than arrays (or ArrayLists), for insertion and
removal operations

The extra flexibility of the "next" pointers avoided the cost of sliding
But... LinkedLists are hard to search, even if sorted

• Is there an analogue of LinkedLists for sorted collections??
• The answer will be...Yes: a particular type of tree!

15-2

12/16/2002 (c) 1997-2002 University of Washington 15-5

Tree Definitions
• A tree is a collection of nodes connected by edges
• A node contains

• Data (e.g. an Object)

• References (edges) to two or more subtrees or children

• Trees are hierarchical
• A node is said to be the parent of its children (subtrees)
• There is a single unique root node that has no parent

• Nodes with no children are called leaf nodes

• A tree with no nodes is said to be empty

12/16/2002 (c) 1997-2002 University of Washington 15-6

Drawing Trees
• For whatever reason, computer sciences trees are normally

drawn upside down: root at the top

12/16/2002 (c) 1997-2002 University of Washington 15-7

Tree Terminology

c g

a

b j

k

fe h id l

m

leaves

nodes

root

edges

12/16/2002 (c) 1997-2002 University of Washington 15-8

Subtrees
• A subtree in a tree is any node in the tree together with all of

its descendants (its children, and their children, recursively)

• Note: note every subset is a subtree!

a

b

c g

j

k m

15-3

12/16/2002 (c) 1997-2002 University of Washington 15-9

Level and Height

c g

a

b j

k

fe h id l

m

leaves (not all at same level)

level 2
level 3

level 1

Definition: The root has level 1
Children have level 1 greater than their parent

Definition: The height is the highest level of a tree.

12/16/2002 (c) 1997-2002 University of Washington 15-10

Binary Trees
• A binary tree is a tree each of whose nodes has no more

than two children
• The two children are called the left child and right child

• The subtrees belonging to those children are called the left subtree
and the right subtree

a

b

j f

e d hg

i

e

k

Left child Right child

12/16/2002 (c) 1997-2002 University of Washington 15-11

Binary Tree Implementation
• A node for a binary tree holds the item and references to its subtrees

public class BTNode {

public Object item; // data item in this node

public BTNode left; // left subtree, or null if none
public BTNode right; // right subtree, or null if none

public BTNode(Object item, BTNode left, BTNode right) { … }

}

• The whole tree can be represented just by a pointer to the root node,
or null if the tree is empty

public class BinTree {
private BTNode root; // root of tree, or null if empty

public BinTree() { this.root = null; }

…
}

12/16/2002 (c) 1997-2002 University of Washington 15-12

Tree Algorithms
• The definition of a tree is naturally recursive:

• A tree is either null,
or data + left (sub-)tree + right (sub-)tree

• Base case(s)?

• Recursive case(s)?

• Given a recursively defined data structure, recursion is often
a very natural technique for algorithms on that data structure
• Don’t fight it!

15-4

12/16/2002 (c) 1997-2002 University of Washington 15-13

A Typical Tree Algorithm: size()
public class BinTree {

…
/** Return the number of items in this tree */
public int size() {

return subtreeSize(root);
}
// Return the number of nodes in the (sub-)tree with root n
private int subtreeSize(BTNode n) {

if (n == null) {
return 0;

} else {
return 1 + subtreeSize(n.left) + subtreeSize(n.right);

}
}

12/16/2002 (c) 1997-2002 University of Washington 15-14

Tree Traversal
• Functions like subtreeSize systematically “visit” each node in

a tree
• This is called a traversal

• We also used this word in connection with lists

• Traversal is a common pattern in many algorithms
• The processing done during the “visit” varies with the algorithm

• What order should nodes be visited in?
• Many are possible

• Three have been singled out as particularly useful for binary trees:
preorder, postorder, and inorder

12/16/2002 (c) 1997-2002 University of Washington 15-15

Traversals
• Preorder traversal:

• “Visit” the (current) node first
i.e., do what ever processing is to be done

• Then, (recursively) do preorder traversal on its children, left to right

• Postorder traversal:
• First, (recursively) do postorder traversals of children, left to right
• Visit the node itself last

• Inorder traversal:
• (Recursively) do inorder traversal of left child
• Then visit the (current) node
• Then (recursively) do inorder traversal of right child

Footnote: pre- and postorder make sense for all trees; inorder only for binary trees

12/16/2002 (c) 1997-2002 University of Washington 15-16

Example of Tree Traversal

Preorder:

Inorder:

Postorder:

In what order are the nodes
visited, if we start the
process at the root?

9

5

2 7

4 6 81

12

17

l1

13

15-5

12/16/2002 (c) 1997-2002 University of Washington 15-17

More Practice
What about this tree?

6

3

1 4

2 5

8

7

l3

10

11

12

Inorder:

Preorder:

Postorder:

12/16/2002 (c) 1997-2002 University of Washington 15-18

New Algorithm: Contains
• Return whether or not a value is an item in the tree

public class BinTree {
…
/** Return whether elem is in tree */
public boolean contains(Object elem) {

return subtreeContains(root, elem);
}
// Return whether elem is in (sub-)tree with root n
private boolean subtreeContains(BTNode n, Object elem) {

if (n == null) {
return false;

} else if (n.item.equals(elem)) {
return true;

} else {
return subtreeContains(n.left, elem) || subtreeContains(n.right, elem);

}
}

12/16/2002 (c) 1997-2002 University of Washington 15-19

Test
contains(d)

contains(c)

a

b

j f

e d hg

i

e

k

12/16/2002 (c) 1997-2002 University of Washington 15-20

Cost of Contains
• Work done at each node:

• Number of nodes visited:

• Total cost:

• Can we do better?
• Why was binary search so much better than linear search?

• Can we apply the same idea to trees?

15-6

12/16/2002 (c) 1997-2002 University of Washington 15-21

Binary Search Trees
• Idea: order the nodes in the tree so that, given that a node

contains a value v,
• All nodes in its left subtree contain values <= v

• All nodes in its right subtree contain values >= v

• A binary tree with these properties is called a binary search
tree (BST)

12/16/2002 (c) 1997-2002 University of Washington 15-22

Examples(?)
• Are these are binary search trees? Why or why not?

9

4

2 7

3 6 81

12

15

14

9

8

2 7

3 5 61

12

15

14

12/16/2002 (c) 1997-2002 University of Washington 15-23

Implementing a Set with a BST
• Can exploit properties of BSTs to have fast, divide-and-

conquer implementations of Set's add and contains
operations
• TreeSet!

• A TreeSet can be represented by a pointer to the root node
of a binary search tree, or null of no elements yet

public class SimpleTreeSet implements Set {
private BTNode root; // root node, or null if none
public SimpleTreeSet() { this.root = null; }
// size as for BinTree

…
}

12/16/2002 (c) 1997-2002 University of Washington 15-24

Contains
• Original contains had to search both subtrees

• Like linear search

• With BSTs, can only search one subtree!
• All small elements to the left, all large elements to the right
• Search either left or right subtree, based on comparison between

elem and value at root of tree
• Like binary search

15-7

12/16/2002 (c) 1997-2002 University of Washington 15-25

Code for contains (in TreeSet)
/** Return whether elem is in set */
public boolean contains(Object elem) {

return subtreeContains(root, (Comparable)elem);
}
// Return whether elem is in (sub-)tree with root n
private boolean subtreeContains(BTNode n, Comparable elem) {

if (n == null) {
return false;

} else {
int comp = elem.compareTo(n.item);
if (comp == 0) { return true; } // found it!
else if (comp < 0) { return subtreeContains(n.left, elem); } // search left
else /* comp > 0 */ { return subtreeContains(n. right, elem); } // search right

}
}

12/16/2002 (c) 1997-2002 University of Washington 15-26

Examples

9

4

2 7

3 6 81

12

15

14

contains(6)

root
9

4

2 7

3 6 81

12

15

14

contains(10)

root

12/16/2002 (c) 1997-2002 University of Washington 15-27

Cost of Contains
• Work done at each node:

• Number of nodes visited (depth of recursion):

• Total cost:

12/16/2002 (c) 1997-2002 University of Washington 15-28

Add
• Must preserve BST invariant: insert new element in correct

place in BST

• Two base cases
• Tree is empty: create new node which becomes the root of the tree

• If node contains the value, found it; suppress duplicate add

• Recursive case
• Compare value to current node’s value

• If value < current node's value, add to left subtree recursively

• Otherwise, add to right subtree recursively

15-8

12/16/2002 (c) 1997-2002 University of Washington 15-29

Example
• Add 8, 10, 5, 1, 7, 11 to an initially empty BST, in that order:

12/16/2002 (c) 1997-2002 University of Washington 15-30

Example (2)
• What if we change the order in which the numbers are

added?

• Add 1, 5, 7, 8, 10, 11 to a BST, in that order (following the
algorithm):

12/16/2002 (c) 1997-2002 University of Washington 15-31

Code for add (in TreeSet)
/** Ensure that elem is in the set. Return true if elem was added, false otherwise. */
public boolean add(Object elem) {

try {
BTNode newRoot = addToSubtree(root, (Comparable)elem); // add elem to tree
root = newRoot; // update root to point to new root node
return true; // return true (tree changed)

} catch (DuplicateAdded e) {
// detected a duplicate addition
return false; // return false (tree unchanged)

}
}
/** Add elem to tree rooted at n. Return (possibly new) tree containing elem, or throw
DuplicateAdded if elem already was in tree */
private BTNode addToSubtree(BTNode n, Comparable elem) throws DuplicateAdded {

… }

12/16/2002 (c) 1997-2002 University of Washington 15-32

Code for addToSubtree
/** Add elem to tree rooted at n. Return (possibly new) tree containing elem, or throw
DuplicateAdded if elem already was in tree */
private BTNode addToSubtree(BTNode n, Comparable elem) throws DuplicateAdded {

if (n == null) { return new BTNode(elem, null, null); } // adding to empty tree
int comp = elem.compareTo(n.item);
if (comp == 0) { throw new DuplicateAdded(); } // elem already in tree
if (comp < 0) { // add to left subtree

BTNode newSubtree = addToSubtree(n.left, elem);
n.left = newSubtree; // update left subtree

} else /* comp > 0 */ { // add to right subtree
BTNode newSubtree = addToSubtree(n.right, elem);
n.right = newSubtree; // update right subtree

}
return n; // this tree has been modified to contain elem

}

15-9

12/16/2002 (c) 1997-2002 University of Washington 15-33

Cost of add
• Cost at each node:

• How many recursive calls?
• Proportional to height of tree

• Best case?

• Worst case?

12/16/2002 (c) 1997-2002 University of Washington 15-34

A Challenge: iterator
• How to return an iterator that traverses the sorted set in

order?
• Need to iterate through the items in the BST, from smallest to

largest

• Problem: how to keep track of position in tree where iteration
is currently suspended
• Need to be able to implement next(), which advances to the correct

next node in the tree

• Solution: keep track of a path from the root to the current
node
• Still some tricky code to find the correct next node in the tree

12/16/2002 (c) 1997-2002 University of Washington 15-35

Another Challenge: remove
• Algorithm: find the node containing the element value being

removed, and remove that node from the tree

• Removing a leaf node is easy: replace with an empty tree
• Removing a node with only one non-empty subtree is easy:

replace with that subtree
• How to remove a node that has two non-empty subtrees?

• Need to pick a new element to be the new root node, and adjust at
least one of the subtrees

• E.g., remove the largest element of the left subtree (will be one of
the easy cases described above), make that the new root

12/16/2002 (c) 1997-2002 University of Washington 15-36

Analysis of Binary Search Tree
• Cost of operations is proportional to height of tree
• Best case: tree is balanced

• Depth of all leaf nodes is roughly the same

• Height of a balanced tree with n nodes is ~log2 n

• If tree is unbalanced, height can be as bad as the number of
nodes in the tree
• Tree becomes just a linear list

15-10

12/16/2002 (c) 1997-2002 University of Washington 15-37

Summary
• A binary search tree is a good general implementation of a

set, if the elements can be ordered
• Both contains and add benefit from divide-and-conquer strategy

• No sliding needed for add
• Good properties depend on the tree being roughly balanced

• Open issues (or, why take a data structures course?)
• How are other operations implemented (e.g. iterator, remove)?

• Can you keep the tree balanced as items are added and removed?

