
15-1

12/16/2002 (c) 1997-2002 University of Washington 15-1

CSE 143 Java

Applications of Trees

12/16/2002 (c) 1997-2002 University of Washington 15-2

Overview
• Applications of traversals
• Syntax trees
• Expression trees

• Postfix expression evaluation
• Infix expression conversion and evaluation

12/16/2002 (c) 1997-2002 University of Washington 15-3

Traversals (Review)
• Preorder traversal:

• “Visit” the (current) node first
i.e., do what ever processing is to be done

• Then, (recursively) do preorder traversal on its children, left to right

• Postorder traversal:
• First, (recursively) do postorder traversals of children, left to right
• Visit the node itself last

• Inorder traversal:
• (Recursively) do inorder traversal of left child
• Then visit the (current) node
• Then (recursively) do inorder traversal of right child

Footnote: pre- and postorder make sense for all trees; inorder only for binary trees

12/16/2002 (c) 1997-2002 University of Washington 15-4

Two Traversals for Printing

public void printInOrder(BTreeNode t) {
if (t != null) {

printInOrder(t.left);
system.out.println(t.data + “ “);
printInOrder(t.right);

}

}

public void printPreOrder(BTreeNode t) {
if (t != null) {

system.out.println(t.data + “ “);
printPreOrder(t.left);
printPreOrder(t.right);

}

}

15-2

12/16/2002 (c) 1997-2002 University of Washington 15-5

Traversing to Delete
• Use a postorder traversal to delete all the nodes in a

tree

// delete binary tree with root t

void deleteTree(BTreeNode t) {

if (t != null) {

deleteTree(t.left);

deleteTree(t.right);

t=null;

}

}

• Puzzler: Would inorder or preorder work just as well??
12/16/2002 (c) 1997-2002 University of Washington 15-6

Analysis of Tree Traversal

• How many recursive calls?
• Two for every node in tree (plus one initial call);
• O(N) in total for N nodes

• How much time per call?
• Depends on complexity O(V) of the visit
• For printing and many other types of traversal, visit is
O(1)time

• Multiply to get total
• O(N)*O(V) = O(N*V)

• Does tree shape matter?

12/16/2002 (c) 1997-2002 University of Washington 15-7

Syntax and Expression Trees

• Computer programs have a hierarchical structure
• All statements have a fixed form

• Statements can be ordered and nested almost arbitrarily
(nested if-then-else)

• Can use a structure known as a syntax tree to
represent programs
• Trees capture hierarchical structure

12/16/2002 (c) 1997-2002 University of Washington 15-8

A Syntax Tree
Consider the Java statement:
if (a == b + 1) x = y; else ...

statement

expression statement statement

equality

LHS

var

a

expression

+var const

b 1

==

expression

=expression expression

var

x

var

y

...

()

;

if else

15-3

12/16/2002 (c) 1997-2002 University of Washington 15-9

Syntax Trees

• An entire .java file can be viewed as a tree

• Compilers build syntax trees when compiling
programs
• Can apply simple rules to check program for syntax

errors

• Easier for compiler to translate and optimize than text
file

• Process of building a syntax tree is called parsing

12/16/2002 (c) 1997-2002 University of Washington 15-10

Binary Expression Trees

• A binary expression tree is a syntax tree used to
represent meaning of a mathematical expression
• Normal mathematical operators like +, -, *, /

• Structure of tree defines result
• Easy to evaluate expressions from their binary
expression tree (as we shall see)

12/16/2002 (c) 1997-2002 University of Washington 15-11

Example

5 * 3 + (9 - 1) / 4 - 1

5 3

*

9 1

- 4

/

+

-

1

12/16/2002 (c) 1997-2002 University of Washington 15-12

Infix, Prefix, Postfix Expressions
5 * 3

•Infix: binary operators are written
between operands
•Postfix: operator after the operands

•Prefix: operator before the operands

15-4

12/16/2002 (c) 1997-2002 University of Washington 15-13

Expression Tree Magic

• Traverse in postorder to get postfix notation!
5 3 * 9 1 - 4 / + 1 -

• Traverse in preorder to get prefix notation
- + * 5 3 / - 9 1 4 1

• Traverse in inorder to get infix notation
5 * 3 + 9 - 1 / 4 - 1

• Note that infix operator precedence may be wrong! Correction:
add parentheses at every step

(((5*3) + ((9 - 1) / 4)) - 1)

12/16/2002 (c) 1997-2002 University of Washington 15-14

More on Postfix
• 3 4 5 * - means same as (3 (4 5 *) -)

• infix: 3 - (4 * 5)

• Parentheses aren’t needed!
• When you see an operator:

both operands must already be available.
Stop and apply the operator, then go on

• Precedence is implicit
• Do the operators in the order found, period!

• Practice converting and evaluating:
• 1 2 + 7 * 2 %

• (3 + (5 / 3) * 6) - 4

12/16/2002 (c) 1997-2002 University of Washington 15-15

Why Postfix?
• Does not require parentheses!
• Some calculators make you type in that way
• Easy to process by a program

• simple and efficient algorithm

12/16/2002 (c) 1997-2002 University of Washington 15-16

Postfix Evaluation Algorithm

• Create an empty stack
• Will hold tokens

• Read in the next “token” (operator or data)
• If data, push it on the data stack
• If (binary) operator:

call it “op”
Pop off the most recent data (B) and next most recent (A) from the stack

Perform the operation R = A op B

Push R on the stack

• Continue with the next token

• When finished, the answer is the stack top.

• Simple, but works like magic!

15-5

12/16/2002 (c) 1997-2002 University of Washington 15-17

Check Your Understanding
• According to the algorithm, 3 5 - means

• 3 - 5 ? or
• 5 - 3 ?

• If data stack is ever empty when data is needed for an
operation:
• Then the original expression was bad
• Why? Give an example

• If the data stack is not empty after the last token has been
processed and the stack popped:
• Then the original expression was bad
• Why? Give an example

12/16/2002 (c) 1997-2002 University of Washington 15-18

Example: 3 4 5 - *

Draw the stack at each step!
• Read 3. Push it (because it’s data)
• Read 4. Push it.

• Read 5. Push it.
• Read -. Pop 5, pop 4, perform 4 - 5. Push -1
• Read *. Pop -1, pop 3, perform 3 * -1. Push -3.

• No more tokens. Final answer: pop the -3.
• note that stack is now empty

12/16/2002 (c) 1997-2002 University of Washington 15-19

Algorithm: converting in- to post-
• Create an empty stack to hold operators
• Main loop:

• Read a token
• If operand, output it immediately
• If ‘(‘, push the '(' on stack
• If operator

hold it aside temporarily
if stack top is an op of => precedence: pop and output

repeat until ‘(‘ is on top or stack is empty
push the new operator

• If ‘)’, pop and output until ‘(‘ has been popped

• Repeat until end of input
• Pop and output rest of stack

12/16/2002 (c) 1997-2002 University of Washington 15-20

Magic Trick
• Suppose you had a bunch of numbers, and inserted them all

into an initially empty BST.

• Then suppose you traversed the tree in-order.
• The nodes would be visited in order of their values. In other

words, the numbers would come out sorted!
• Try it!
• This algorithm is called TreeSort

15-6

12/16/2002 (c) 1997-2002 University of Washington 15-21

Tree Sort
• O(N log N) most of the time

• Time to build the tree, plus time to traverse

• When is it not O(N log N)?

• Trivial to program if you already have a binary search tree
class

• Note: not an "in-place" sort
• The original tree is left in as-is, plus there is a new sorted list of

equal size

• Is this good or bad?

• Is this true or not true of other sorts we know?

12/16/2002 (c) 1997-2002 University of Washington 15-22

Preview of CSE326/373:
Balanced Search Trees

• Cost of basic binary search operations
• Dependent on tree height
•O(log N) for N nodes if tree is balanced
•O(N) if tree is very unbalanced

• Can we ensure tree is always balanced?
• Yes: insert and delete can be modified to keep the tree

pretty well balanced
Several algorithms and data structures exist
Details are complicated

• Results in O(log N) “find” operations, even in worst case

