
16-1

12/11/2002 (c) University of Washington 16-1

CSE 143 Java

Hashing
Set Implementation via Hashing

12/11/2002 (c) University of Washington 16-2

Review
• Want to implement Sets of objects

• Want fast contains(..), add(..)

• One strategy: a sorted list
• OK contains(..): use binary search
• Slow add(..): have to maintain list in sorted order

• Another strategy: a binary search tree
• OK contains(..): use binary search through tree

• OK add(..): use binary search to find right place to insert

12/11/2002 (c) University of Washington 16-3

A Magical Strategy
• What if... we had a magic method that could convert each

possible element value into its own unique integer?
• Takes an element, returns an integer (called a hash code)

• Called a perfect hash function

• Then we could store the set elements in an array,
with each element stored at an index equal to its hash code

• Footnote: Not all array elements would be used...
• Stores null if element not in set

object
489302

12/11/2002 (c) University of Washington 16-4

If Only We Had A Perfect Hash...

• How fast is contains(…)?
• would just test whether the index was non-null

• Fast!

• How fast is add(…)?
• would just set the index to contain the element
• Fast!

16-2

12/11/2002 (c) University of Washington 16-5

Hash Functions
• Perfect hash functions are practical to implement only in

limited cases
• When the set of possible elements is small and known in advance

• But "imperfect" hash functions are practical to implement
• An imperfect hash function is allowed to give two different

objects the same hash code

• Imperfect hash functions compromise the promise of fast
performance
• How?
• Can we salvage the design?

12/11/2002 (c) University of Washington 16-6

Buckets
• Instead of each array position containing the set elements directly...

• it can contain a list of elements that all share the same hash code
• This list is called a bucket

• To test whether an element is in the set:
• search the bucket list stored at the hash code index
• Add works similarly

• If hash function is good, then most elements will be in different
buckets, and each bucket will be short

• Most of the time, contains(…) and add(…) will be fast!

• Footnote: This design is open hashing; there is a variation called
closed hashing too.

12/11/2002 (c) University of Washington 16-7

hashCode()
• Class Object defines a method hashCode() which returns a an

integer code for an object
• Strives to be different for different objects, but might not always be
• Other classes can override this if a more suitable hash function is appropriate for

instances

• Key rule: if o1 and o2 are different objects, then if
o1.equals(o2) == true

it must also be true that
o1.hashCode() == o2.hashCode()

• Corollary: If you override either of hashCode() or equals(…) in a class,
you probably should override the other one to be consistent

• Danger: The Java system cannot enforce these rules. A well-designed
(“proper”) class will follow them as a matter of good practice.

12/11/2002 (c) University of Washington 16-8

HashSet Class
• HashSet: an implementation of Set using hashing

public class HashSet implements Set {
private List[] buckets; // buckets[k] is a list of elements that satisfy

// elem.hashCode() % nBuckets == k

// buckets[k]==null if no elems have hashcode k

private static final nBuckets =101; // default # of buckets

public HashSet() {
buckets = new List[nBuckets]; // each elem initialized to null

}

…

16-3

12/11/2002 (c) University of Washington 16-9

Computing the Bucket Number
• Algorithm:

• Compute the object's hash code

• Convert it into a legal index into the buckets array:
something in the range 0..buckets.length-1

/** Return the index in buckets where the elem would be found, if it's in the set */
private int bucketNum(Object elem) {

return elem.hashCode() % buckets.length;
}

12/11/2002 (c) University of Washington 16-10

Adding a New Element
public boolean add(Object elem) {

int i = bucketNum(elem);
List bucket = buckets[i];
if (buckets == null) {

// this is the first element in this bucket; create the bucket list first
bucket = new ArrayList();
buckets[i] = bucket;

} else {
// check if bucket list already contains the element
if (bucketContains(bucket, elem)) { return false; } // already there

}
bucket.add(elem); // add the new element
return true;

}

12/11/2002 (c) University of Washington 16-11

Checking Whether an Element is In the Set
public boolean contains(Object elem) {

int i = bucketNum(elem);
List bucket = buckets[i];
if (buckets == null) {

return false; // no elements at this position

} else {
return bucketContains(bucket, elem); // search the bucket list

}
}

12/11/2002 (c) University of Washington 16-12

Searching a Bucket List
private boolean bucketContains(List bucket, Object elem) {

Iterator iter = bucket.iterator();
while (iter.hasNext()) {

Object existingElem = iter.next();
if (elem.equals(existingElem)) {

// element already present
return true;

}
}

// element not found
return false;

}

16-4

12/11/2002 (c) University of Washington 16-13

How Efficient is HashSet?
• Parameters

• n number of items stored in the HashSet
• b number of buckets

• Load factor: n/b – ratio of # entries to # buckets
• Cost of contains(…) and add(…) is roughly constant,

independent of the size of the set, provided that:
• Hash function is good – distributes keys evenly throughout buckets

Ensures that buckets are all about the same size; no really long buckets

• Load factor is small
Don't have to search too far in any bucket

• In the average case, the fastest set implementation!
• In the worst case, the slowest…

12/11/2002 (c) University of Washington 16-14

Some Issues
• Interesting issues for data structures courses

• How do you pick a good hash function?
Needs to be O(1) and produce few duplicates

• How do you keep the load factor small?
One answer: Grow the buckets array and rehash all the elements if the table gets
large

• Take CSE373 or CSE326 to learn more!

12/11/2002 (c) University of Washington 16-15

Summary
• Hash functions can "guess" the right index to look for an

element
• Can do it faster than binary search can

• If most buckets are short (e.g. <= 3 elements), then works
very well

• Need good hash functions and the ability to grow the buckets
array, to keep buckets small

