CSE 143 Java

Program Efficiency & Introduction to Complexity Theory

Reading: Ch. 21 (go light on the math)

11/11/200

(c) 2001-3, University of Washington

6-1

GREAT IDEAS IN COMPUTER SCIENCE

ANALYSIS OF ALGORITHMIC COMPLEXITY

11/11/2003

(c) 2001-3, University of Washington

Overview

- · Measuring time and space used by algorithms
- Machine-independent measurements
- · Costs of operations
- Asymptotic complexity O() notation and complexity classes
- Comparing algorithms
- · Performance tuning

11/11/2003

(c) 2001-3, University of Washington

Comparing Algorithms

- Example: We'll see two different list implementations
 - · Dynamic expanding array
 - · Linked list
- · Which is "better"?
- · How do we measure?
- · Stopwatch? Why or why not?

11/11/2003

(c) 2001-3, University of Washington 16-4

Program Efficiency & Resources

- Goal: Find way to measure "resource" usage in a way that is independent of particular machines or implementations
- Resources
- Execution time
- Execution space
- · Network bandwidth
- others
- · We will focus on execution time
- Techniques/vocabulary apply to other resource measures

11/11/2003

(c) 2001-3, University of Washington

16-5

16-3

Example

· What is the running time of the following method?

```
// Return the sum of the elements in array.
double sum(double[] data) {
    double ans = 0.0;
    for (int k = 0; k < data.length; k++) {
        ans = ans + data[k];
    }
    return ans;</pre>
```

- · How do we analyze this?
- · What does the question even mean?

11/11/2003

(c) 2001-3, University of Washington

16-6

Analysis of Execution Time

- 1. First: describe the *size* of the problem in terms of one or more parameters
 - · For sum, size of array makes sense
 - Often size of data structure, but can be magnitude of some numeric parameter, etc.
- 2. Then, count the number of steps needed as a function of the problem size
- · Need to define what a "step" is
- · First approximation: one simple statement
- · More complex statements will be multiple steps

11/11/200

(c) 2001-3, University of Washington

16-7

16-9

Cost of operations: Constant Time Ops

- · Constant-time operations: each take one abstract time "step"
 - Simple variable declaration/initialization (double sum = 0.0;)
 - · Assignment of numeric or reference values (var = value;)
 - · Arithmetic operation (+, -, *, /, %)
 - · Array subscripting (a[index])
 - Simple conditional tests (x < y, p != null)
- Operator new itself (not including constructor cost)
 Note: new takes significantly longer than simple arithmetic or assignment, but its cost is independent of the problem we're trying to analyze
- Note: watch out for things like method calls or constructor invocations that look simple, but can be expensive

11/11/2003

(c) 2001-3, University of Washington

Cost of operations: Zero-time Ops

- · Can sometimes perform operations at compile time
 - · Nothing left to do at runtime
- Variable declarations without initialization double[] overdrafts;
- Variable declarations with compile-time constant initializers

static final int maxButtons = 3;

Some casts (but not those that need a runtime check)
 int code = (int) "?":

11/11/2003

(c) 2001-3, University of Washington

Sequences of Statements

· Cost of

S1: S2: ...: Sn

is sum of the costs of S1 + S2 + ... + Sn

11/11/2003

(c) 2001-3, University of Washington

Conditional Statement

 We're generally trying to figure out how long it might take to execute a statement (worst case), so the cost of

if (condition) {
 S1;
} else {
 S2;

is normally the max cost of S1 or S2 (plus cost of the condition)

- · Other possibilities (less common)
- Best case use the min cost of S1 or S2
- Expected (average) case probabilistic analysis needed

11/11/2003

(c) 2001-3, University of Washington

16-11

Analyzing Loops

- · Basic analysis
- 1. Calculate cost of each iteration
- 2. Calculate number of iterations
- Total cost is the product of these
 Caution -- sometimes need to add up the costs differently if
 cost of each iteration is not roughly the same
- · Nested loops
- Total cost is number of iterations or the outer loop times the cost of the inner loop
- · same caution as above

11/11/2003

(c) 2001-3, University of Washington

16-12

16-10

Method Calls

- Cost for calling a function is cost of...
- cost of evaluating the arguments (constant or non-constant)
- + cost of actually calling the function (constant overhead)
- + cost of passing each parameter (normally constant time in Java for both numeric and reference values)
- + cost of executing the function body (constant or non-constant?)
- System.out.print(lineNumber); System.out.println("Answer is " + Math.sqrt(3.14159));
- Note that "evaluating" and "passing" an argument are two different things

11/11/2003

(c) 2001-3, University of Washington

.

16-15

Exercise

- Analyze the running time of printMultTable
 - Pick the problem size
 - · Count the number of steps

```
// print multiplication table with

// n rows and columns

void printMultTable(int n) {

  for (int k=0; k <=n; k++) {

    printRow(k, n);

  }
```

// print row r with length n of a // multiplication table void printRow(int r, int n) { for (int k = 0; k <= r; k++) { System.out.print(r*k + "*); System.out.println();

11/11/2003

(c) 2001-3, University of Washington

Analysis

11/11/2003 (c) 2001-3, University of Washington

Comparing Algorithms

- Suppose we analyze two algorithms and get these times (numbers of steps):
- Algorithm 1: 37n + 2n² + 120
- Algorithm 2: 50n + 42

How do we compare these? What really matters?

- Answer: In the long run, the thing that is most interesting is the cost as the problem size n gets large
 - What are the costs for n=10, n=100; n=1,000; n=1,000,000?
 - Computers are so fast that how long it takes to solve small problems is rarely of interest

11/11/2003

(c) 2001-3, University of Washington

16-16

Orders of Growth

· What happens as the problem size doubles?

N	log ₂ N		log ₂ N	N ²	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~1019
128	7	640	896	16384	~1038
256	8	1280	2048	65536	~1076
10000	13	50000	105	108	~103010
11/11/2003		(c) 2001-3	, University of Washing	gton	16-17

Asymptotic Complexity

- Asymptotic: Behavior of complexity function as problem size gets large
 - Only thing that really matters is higher-order term
- · Can drop low order terms and constants
- The asymptotic complexity gives us a (partial) way to answer "which algorithm is more efficient"
- Algorithm 1: $37n + 2n^2 + 120$ is proportional to n^2
- Algorithm 2: 50n + 42 is proportional to n
- Graphs of functions are handy tool for comparing asymptotic behavior

11/11/2003

(c) 2001-3, University of Washington

Big-O Notation

 \bullet Definition: If f(n) and g(n) are two complexity functions, we say that

 $f(n) = O(g(n)) \qquad \text{(pronounced } f(n) \text{ is } O(g(n)) \text{ or is order } g(n) \text{)}$ if there is a constant c such that

 $f(n) \le c \cdot g(n)$

for all sufficiently large n

11/11/200

(c) 2001-3, University of Washington

6-10

Exercise 1

· Prove that 5n+3 is O(n)

11/11/2003

3 (c) 2001-3, University of Washington

Exercise 2

• Prove that 5n2 + 42n + 17 is O(n2)

11/11/2003

(c) 2001-3, University of Washington

Implications

• The notation f(n) = O(g(n)) is *not* an equality (yet another abuse of the = sign; c.f., assignment operator)

- · Think of it as shorthand for
- · "f(n) grows at most like g(n)" or
- · "f grows no faster than g" or
- · "f is bounded by g"
- · O() notation is a worst-case analysis
- · Generally useful in practice
- Sometimes want average-case or expected-time analysis if worst-case behavior is not typical (but these are often harder to analyze)

11/11/2003

(c) 2001-3, University of Washington

16-22

Complexity Classes

- · Several common complexity classes (problem size n)
- · Constant time: O(k) or O(1)
- Logarithmic time: O(log n) [Base doesn't matter. Why?]
- Linear time: O(n)
 "n log n" time: O(n log n)
 Quadratic time: O(n²)
 Cubic time: O(n³)
- · Exponential time: O(kn)
- · O(nk) is often called polynomial time

11/11/2003

(c) 2001-3, University of Washington

16-23

16-21

Rule of Thumb

- If the algorithm has polynomial time or better: practical
- · typical pattern: examining all data, a fixed number of times
- · If the algorithm has exponential time: impractical
- ${f \cdot}$ typical pattern: examine all combinations of data
- · What to do if the algorithm is exponential?
- Try to find a different algorithm
- Some problems can be proved not to have a polynomial solution
- Other problems don't have known polynomial solutions, despite years of study and effort
- · Sometimes you settle for an approximation

The correct answer most of the time, or an almost-correct answer all of the time

11/11/2003 (c) 2001-3, University of Washington 16-3

Big-O Arithmetic

- For most common functions, comparison can be enormously simplified with a few simple rules of thumb
- Memorize complexity classes in order from smallest to largest: O(1), O(log n), O(n), O(n log n), O(n^2), etc.
- Ignore constant factors 300n + 5n⁴ + 6 + 2ⁿ = O(n + n⁴ + 2ⁿ)
- Ignore all but highest order term O(n + n⁴ + 2ⁿ) = O(2ⁿ)

11/11/2003

(c) 2001-3, University of Washington

16-25

Analyzing List Operations (1)

- We can use O() notation to compare the costs of different list implementations
- Operation

Dynamic Array

Linked List

- · Construct empty list
- · Size of the list
- isEmpty
- · clear

11/11/2003

(c) 2001-3, University of Washington

Analyzing List Operations (2)

· Operation List Dynamic Array

Linked

16-27

16-29

- · Add item to end of list
- · Locate item (contains, indexOf)
- Add or remove item once it has been located

11/11/2003

(c) 2001-3, University of Washington

Wait! Isn't this totally bogus??

- · Write better code!!
- More clever hacking in the inner loops
 (assembly language, special-purpose hardware in extreme cases)
- · Moore's law: Speeds double every 18 months
 - · Wait and buy a faster computer in a year or two!

• But ...

11/11/2003

(c) 2001-3, University of Washington 16-28

How long is a Computer-Day?

- If a program needs f(n) microseconds to solve some problem, how big a problem can it solve in a day?
 - One day = $1,000,000^{*}24^{*}60^{*}60 = 9^{*}10^{10}$ (aprox)

f(n)	n such that f(n) = one day			
n	9 * 10 ¹⁰			
5n	2 * 10 ¹⁰			
n log₂n	3 * 10 ⁹			
n ²	3 * 10 ⁵			
n^3	4 * 10 ³			
2 ⁿ	36			

11/11/2003

(c) 2001-3, University of Washington

Speed Up The Computer by 1,000,000

 Suppose technology advances so that a future computer is 1,000,000 fast than today's

f(n) original n speedup on future machine 9 * 10¹⁰ million times larger n 2 * 1010 million times larger 5n n log₂n 3 * 109 60,000 times larger $3 * 10^{5}$ 1,000 times larger 4 * 103 100 times larger n^3 +20

11/11/2003

(c) 2001-3, University of Washington

Summary

- · Analyze algorithm sufficiently to determine complexity
- Compare algorithms by comparing asymptotic complexity
- For large problems, an asymptotically faster algorithm will always trump clever coding tricks
- Optimize/tune only things that actually matter, once you've picked the best algorithm

11/11/2003 (c) 2001-3, University of Washington 16-33

Computer Science Note

- Algorithmic complexity theory is one of the key intellectual contributions of Computer Science
- · Typical problems
- What is the worst/average/best-case performance of an algorithm?
- What is the best complexity bound for all algorithms that solve a particular problem?
- ${\boldsymbol{\cdot}}$ Interesting and (in many cases) complex, sophisticated math
 - ${\boldsymbol{\cdot}}$ Probabilistic and statistical as well as discrete
- Still some key open problems
- Most notorious: P ?= NP

11/11/2003 (c) 2001-3, University of Washington

16-34