
 TIME STARTED: ___________________
 TIME ENDED: _____________________

CSE 143 SUMMER 2005
MIDTERM EXAMINATION

NAME: KEY

TA:

 0. (4 points) Write your name and TA’s name above and read and sign the box below.

0 6

1 7

2 8

3 9

4 10

5 11

TOTAL

READ AND SIGN THIS:

I certify that the answers on this exam are all my own work, and that I have not
discussed the exam questions or answers with anyone in the class who has already
taken the exam. I also will not (directly or indirectly) discuss the exam questions
or answers with anyone in the class who has not yet taken the exam.

__

1. (5 points) In some methods, you wrote code to check if a certain precondition was
held. If the precondition did not hold, then you threw an exception. This leads to
robust code by catching client code misusing your methods. This seems like a great
idea, so when would you NOT want to check for the precondition in a method? Why
wouldn’t you? (You may use no more than 30 words.)

Answers (or close derivatives thereof) we accepted:
• It would be too inefficient to do so.
• The precondition is ensured by the other methods in the class.

2. (5 points) Recall the definition of the ListNode class:

public class ListNode {
 int data;
 ListNode next;
}

We can print a linked list using the following method:

 public static void print(ListNode front) {
 ListNode current = front;
 while (current != null) {
 System.out.println(current.data + “ “);
 current = current.next;
 if (current == front) {
 break;
 }
 }
 }

Starting from the node pointed to by front , draw one or more nodes and link them
together in such a way that the call print(front) will not “behave” properly.

front:

3. (8 points) Consider the following method:

public void mystery(int n) {
 if (n >= 7) {
 System.out.println(n);
 } else {
 System.out.print(n);
 System.out.print(n);
 mystery(n + 7);
 }
}

For each call below, indicate what output is produced by the method. If the call
results in infinite recursion, write out the first 5 characters followed by “…”.

 Method Call Output Produced

mystery(-1) __________-1-16613__________
mystery(711) ____________711____________
mystery(0) ____________007____________
mystery(-5) __________-5-5229___________

4. (8 points) Consider the following method:

public void mystery(int n) {
 if (n == 0) {
 System.out.print(n);
 } else {
 System.out.print(“(”);
 mystery(n – 1);
 System.out.print(n);
 mystery(n – 1);
 System.out.print(“)”);
 }
}

For each call below, indicate what output is produced by the method. If the call
results in infinite recursion, write out the first 5 characters followed by “…”.

 Method Call Output Produced

mystery(2) ________((010)2(010))________
mystery(0) _____________0_____________
mystery(-1) ___________(((((…___________
mystery(1) ___________(010)____________

5. (20 points) A palindrome reads the same backward or forward. The number 12321 is
a palindrome, because if you start from the left side or the right side, it reads exactly
the same way. Write a method isPalindrome that takes an integer array nums
and returns true or false if the array of numbers constitute a palindrome in the
sense that the first element matches the last element; the second element matches the
second-to-last element, and so on. Do NOT use recursion.

Examples where isPalindrome would return true :

Examples where isPalindrome would return false :

 public boolean isPalindrome(int[] nums) {
 for (int i = 0; i < nums.length; i++) {
 if (nums[i] != nums[nums.length - 1 – i]) {
 return false;
 }
 }
 return true;
 }

 If your solution to this problem is blank, you will receive ¼ credit (5 points).

123 2 24 2 123

123 2 214 99 99 214 2 123

123 2 24 1 123

123 2 214 99 98 214 2 125

6. (10 points) What is the running time of this method? Circle one: O(1) O(n)

 public int add100(int[] array) {
 if (array.length < 100) {
 return 0;
 }

 int sum = 0;
 for (int i = 0; i < 100; i++) {
 sum += array[i];
 }
 return sum;
 }

 Explain your answer in 30 words or less.

We are interested in the running time as the array gets larger and larger. After the
array exceeds a size of 100, the size of the array is irrelevant, and a constant
number of steps is needed to solve the problem.

7. (20 points) Recall the definition of the ListNode :

public class ListNode {
 int data;
 ListNode next;
}

Assume that we define a class SortedLinkedIntList that is similar to
LinkedIntList , except that the data stored in the nodes are in sorted order:

public class SortedLinkedIntList {

 private ListNode front;

 <methods>
 }

Write a method mode(void) for the SortedLinkedIntList class that returns
the mode of the numbers in the list. The mode of a set of a numbers is the number
that appears the most frequently. If there is a tie, return any of the numbers that share
the highest frequency. If the list is empty, throw an IllegalStateException .

For example, if the list contained [1,1,1,4,4,4,4,4,4,5,6,6,70,99,99], then a call to
mode() would return 4, since it appears the most frequently (six times). If the list
contained [1,4,4,7,7,11,25,25,99], then your method can return either 4, 7, or 25 ,
because they all share the highest frequency (two times).

 Answer on next page.

 If your solution to this problem is blank, you will receive ¼ credit (5 points).

 public int mode(void) {
 if (front == null) {
 throw new IllegalStateException();
 }

 int value = front.data;
 int maxRun = 1;
 int currentRun = 1;

 ListNode current = front.next;
 ListNode last = front;
 while (current != null) {
 if (current.data == last.data) {
 currentRun++;
 if (currentRun > maxRun) {
 maxRun = currentRun;
 value = current.data;
 } else {
 currentRun = 1;
 }
 }
 last = current;
 current = current.next;
 }
 return value;
 }

Stack Interface

// Interface Stack defines a set of operations for manipulating a
// LIFO (Last In First Out) structure that can be u sed to store
// objects.

public interface Stack {
 // post: given value is pushed onto the top of the stack
 public void push(Object value);

 // pre : !isEmpty()
 // post: removes and returns the value at the t op of the stack
 public Object pop();

 // post: returns true if the stack is empty, fa lse otherwise
 public boolean isEmpty();

 // post: returns the current number of element in the stack
 public int size();
}

Queue Interface

// Interface Queue defines a set of operations for manipulating a
// FIFO (First In First Out) structure that can be used to store
// objects.

public interface Queue {
 // post: given value inserted at the end of the queue
 public void enqueue(Object value);

 // pre : !isEmpty()
 // post: removes and returns the value at the f ront of the queue
 public Object dequeue();

 // post: returns true if the queue is empty, fa lse otherwise
 public boolean isEmpty();

 // post: returns the current number of element in the queue
 public int size();
}

8. (30 points) Write a method pushNumTimes that takes a Queue q as an argument
and returns a Stack . Assume that q is storing Integer objects. Each integer
value i at position n (where the object at the front of the queue has position 1) in the
queue will be replaced by an Integer object with an integer value of (i * n) on
the stack. The contents of the queue do not have to be preserved.

For illustration purposes, let a queue’s contents be represented as a list of numbers,
where the leftmost number represents the front of the queue; let a stack’s contents be
represented as a list of numbers where the leftmost number represents the top of the
stack. Suppose q initially contained [6, 4, 5, 3], then the stack returned from a call to
pushNumTimes(q) will have [6, 8, 15, 12].

For your convenience, the Queue and Stack interfaces are on the previous page.
The names of the classes that implement those interfaces are LinkedQueue and
ArrayStack , respectively. Both classes have constructors that take no arguments.

 If q initially contained:

 position: 1 2 3 4

Then the returned stack
would contain:

6

8

15

12

 public Stack pushNumTimes(Queue q) {
 Stack s = new ArrayStack();
 int counter = 1;
 while (!queue.isEmpty()) {
 int n = ((Integer)queue.dequeue()).intValue();
 s.push(new Integer(n * counter));
 counter++;
 }
 while (!s.isEmpty()) {
 q.enqueue(s.pop());
 }
 while (!q.isEmpty()) {
 s.push(q.dequeue());
 }
 return s;
 }

6 4 5 3

9. (20 points) Consider the following definitions:

 public class Apple extends Date {
 public void method2() {
 System.out.println(“Apple2”);
 }
 }

 public class Banana {
 public void method2() {
 System.out.println(“Banana2”);
 }
 }

 public class Cherry extends Date {
 public void method2() {
 System.out.println(“Cherry2”);
 }

 public void method1() {
 super.method1();
 System.out.println(“Cherry1”);
 }
 }

 public class Date extends Banana {
 public void method1() {
 System.out.println(“Date1”);
 }

 public void method2() {
 System.out.println(“Date2”);
 method1();
 }
 }

 And assuming the following variables have been defined:

 Object var1 = new Cherry();
 Banana var2 = new Date();
 Banana var3 = new Cherry();
 Apple var4 = new Apple();

 In the table below, indicate in the right-hand column the output produced by the
statement in the left-hand column. If the statement produces more than one line of
output, indicate the line breaks with slashes as in "a/b/c " to indicate three lines of
output with "a" followed by "b" followed by "c". If the statement causes an error,
fill in the right-hand column with either the phrase "compiler error" or "runtime error"
to indicate when the error would be detected.

 Statement Output

 var1.method1(); ______compiler error___________

 var2.method1(); ______compiler error___________

 var3.method1(); ______compiler error___________

 var4.method1(); ______Date1__________________

 ((Cherry)var2).method1(); ______runtime error____________

 ((Date)var2).method2(); ______Date2 / Date1____________

 ((Date)var1).method2(); ______Cherry2________________

 ((Cherry)var1).method1(); ______Date1 / Cherry1__________

 ((Cherry)var4).method1(); ______compiler error___________

 ((Date)var3).method2(); ______Cherry2________________

10. (20 points) Using recursion, write a method times that takes two integers a and b
as parameters and returns their product, i.e., a * b . You are to multiply them by
using a series of additions. You may use +, - , comparison operators (>, >=, <, <=,
==, !=), and Boolean operators (&&, ||). You may NOT use * , / , any loops (i.e.,
for or while) or any method from the Java library.

You may find the following equality useful: a * b = b + (a – 1) * b

For at most ¾ credit (i.e., 15 points), you may assume that both arguments are non-
negative. If you would like that option, sign here: ____________________________

public int times(int a, int b) {
 if (a < 0) {
 return –times(-a, b);
 }
 if (a == 0) {
 return 0;
 }
 return b + times(a-1, b);
 }

If your solution to this problem is blank, you will receive ¼ credit (5 points).

11. (BONUS: 5 points) Tell us a funny story or joke. If your submission cracks everyone
on the course staff up, you’ll get an extra smiley face. If you’re not a funny person,
you may draw your TA. If it looks like you spent more than a minute, you get full-
credit.

If you didn’t leave this page blank, we gave you 5 extra points.

