CSE 490c (CSE 303)

Concepts and Tools
for Software Development

CSE 490c -- Craig Chambers

Introduction & Overview

CSE 490c -- Craig Chambers

Goal: novice programmer =
skilled developer

= Understand and control
(and take responsibility for)
= operating system
= development environment
= program's resources
= Can work in teams
= Know testing, design strategies
= Aware of impacts on society
= Self-reliant

CSE 490c -- Craig Chambers

Warning!

= Course is under construction
= Things will go wrong
= Feedback desired
= I'm teaching what I know and use
= There's good stuff I don't know
= You may know things I don't
= Contribute!

= Take charge of getting the most out of
this course

CSE 490c -- Craig Chambers

Tentative outline (part 1)

= Unix, advanced cmds, scripts: 1 week

= Dev. tools, group programming: 1 week
= Testing, specifications: 1 week

» C/C++: 2 weeks

= (midterm)

CSE 490c -- Craig Chambers

Tentative outline (part 2)

= Other dev. environments: 1 week
= Design patterns: 1 week

= Requirements, UI design: 1 week
] (ﬁnal)

CSE 490c -- Craig Chambers

Homework and projects

= Roughly weekly
= Some exercises
= An extended group project
= A Java component
= A C component
= Testing & design & documentation parts

CSE 490c -- Craig Chambers

"Section"

= Friday will often be different

= Discussion & debate on societal impacts of

computer systems
» Contribute your clippings
= Group project work & meetings
= Code reviews
= Guest lectures
» Contribute your knowledge

CSE 490c -- Craig Chambers

Textbooks

= C++ for Java Programmers
= Design Patterns

= (one other on being a good
programmer)

CSE 490c -- Craig Chambers

Survey on background

= Unix?

= Java?

= C/C++?

= Program size?

= Development environments & tools?
= Can bring laptops?

CSE 490c -- Craig Chambers

Unix

CSE 490c -- Craig Chambers

Why study Unix?

= Contrast with insulating point-and-click OSs,
like Windows
» Understand and manage your own environment
= See a different kind of programming than
Java or C programming
= See how simple (and sophisticated) tools can
be combined to get interesting effects
= pipes
= SCripts

CSE 490c -- Craig Chambers

Unix is widely available

= Machines running Linux (and other Unix
variants)
= ceylon, fiji, sumatra, tahiti

= From Windows machines:

= Can remotely log in to instructional Linux
machines, e.g. using Ssh Secure Shell

= Can install Cygwin!
» (How can you find out about Cygwin?)

CSE 490c -- Craig Chambers 13

The shell

= When log in, get a
command shell or interpreter
= Can enter commands, see them execute
= Line-oriented
= Standard syntax:
= commandName argl1 ... argh

= Some args are ogptions, conventionally
prefixed by a hyphen

= Start in home directory

CSE 490c -- Craig Chambers 14

Directories and files

= A directory is a folder containing files and
other (nested) directories
= Directories form a tree
= A directory is just a special kind of file
= Files (including directories) can have names
of any length, including just about any
characters, any number of times

= No rules about 3-character extensions
« hi.there-bob.textFile

CSE 490c -- Craig Chambers 15

Path names

= To name a file in a directory, use
dirName/fileName

= Can concatenate directory names to
form a path
= foo/bar/baz/blip

CSE 490c -- Craig Chambers 16

Special directory names

= . names the current directory

= .. names the enclosing directory

= / names the root directory (sort of)

= ~ names your home directory (sort of)

= What is /foo/bar/../. ?
= Whatis /.. ?

CSE 490c -- Craig Chambers 17

Some basic commands

sls
» list current directory contents
» Is - for detailed listing

= mkdir dirName...

= create one or more nested directories of given
names

= cd dirName

» change current directory to named one
= can be a full path name, as with most commands

] de
» print name of current directory

CSE 490c -- Craig Chambers 18

Viewing files

= cat fileName...

= print out contents of one or more files
= more fileName...

= Same as cat, but only a page at a time
w Ipr fileName...

= print out a file onto the "current" printer

= Ipr —PprinterName fileName for a specific
printer

CSE 490c -- Craig Chambers

Copying and moving files

= Cp fromName toName

= mv fromName toName

= copy or move a file from one name to
another (which shouldn't exist yet)

» Cp fromName... dirName
= mv fromName... dirName

= COpy or move one or more files to an
existing directory (keeping same names)

CSE 490c -- Craig Chambers 20

Removing files and directories

= rm fileName...

= remove one or more files
= rmdir dirName...

= remove one or more (empty) directories
= rm —r fileName...

= remove one or more files, and their contents if
directories

= Know what you're doing!
= (What does rm —r / do?)

CSE 490c -- Craig Chambers

21

Creating and editing files

= emacs fileName

= emacs is a very powerful & customizable
editor

= lots of control-key commands

= X-windows versions support mouse clicking
and menu bars

= worth learning; we'll study more later

= Under cygwin, can do
notepad fileName

CSE 490c -- Craig Chambers 22

Finding out
more about commands

= man commandName

= prints out manual on commandName
= many cool options on earlier commands!

= man —k keyword

= prints out all manual page titles that
include keyword

= (What does man man do?)

CSE 490c -- Craig Chambers

23

Permissions

= Every file has an owner and a group

= Owner is usually the person (login id) who created
the file (see chown)

= Group is the group that can share access to the
file (see chgrp, groups)

= Every file has permissions, which specify
whether owner/group/everyone can
read/write/"execute" the file
= execute for a directory: can look inside
» (see chmod, Is —1)

CSE 490c -- Craig Chambers 24

Filename patterns

= Can name a bunch of files using a filename
pattern
» Embedded in regular filenames

= Wildcards
= * matches a sequence of 0 or more chars
= ? matches exactly one char

= Expanded into multiple arguments, based on
matching file/pathnames

cp test?.htm* ~/www

CSE 490c -- Craig Chambers 25

More filename patterns

= Character ranges
» [aeiou] matches a lower-case vowel
» [0-9A-Fa-f] matches a hexadecimal digit
= Sets
» {foo,bar,baz} matches foo, bar, or baz
» {foo,} matches foo or empty
» can have patterns embedded in the list
= If more than one pattern, all combinations

Is {,/usr{,/local}}/[Bb]in

CSE 490c -- Craig Chambers 26

Customizing the shell

= Shell has several ways to customize its
behavior
= Details depend on your default shell

= I'll assume csh/tcsh; bash is a popular
alternative

CSE 490c -- Craig Chambers 27

Shell variables

n set var... var=value ... var=(value...) ...
» adds/changes one or more settings
= set alone prints out all settings
» unset var... removes one or more settings

set nonomatch history=100 autolist filec
set prompt = "%m:%~#%h\>"

= man csh or man tcsh to see all possibilities

CSE 490c -- Craig Chambers 28

Environment variables

= printenv

= prints out all settings
» setenv varName value

= adds/changes a setting (no "="1)
= unsetenv varName

= removes a setting

= Subtle distinction between vars and env vars

CSE 490c -- Craig Chambers 29

Printing out var values

= $varName as command argument is
replaced with value of variVame

= echo arg...
= just prints out its arguments (silly, right?)

= echo $varName
= prints out the value of varName

CSE 490c -- Craig Chambers 30

The path variable

= Unix finds commands using the path
variable
= set path = (... a list of directories ...)
= (How to print out your current path?)
= When the shell sees
command arg...
it looks for an executable file named
command in a directory on the path,
searching in order, and then runs it

CSE 490c -- Craig Chambers 31

Adding to the path

= Can add your own directories of commands
by changing the path variable
» Keep all the old directories!
= To add ~/bin to the path [why the front?]:
» set path = (~/bin $path)
= Now can put my programs in ~/bin
»« mv myProg ~/bin
» rehash
= tell the shell to recompute what programs are available
= myProg myArgs... now works, from anywhere!

CSE 490c -- Craig Chambers 32

Saving customizations

= When you log in, shell automatically
runs commands in the file ~/.cshrc (or
~/.bashrc or ~/.profile or ...)

= For any settings you want all the time
(e.g. the expanded path setting), add
them to your .cshrc file, and you'll get
them automatically when you log in
next time

CSE 490c -- Craig Chambers 33

Quoting

= Sometimes want to stop shell from doing
filename pattern expansions, or $var
expansions, or argument splitting on spaces
= Can do this in several ways:
= Surround with single quotes
= turn off all expansions
= Surround with double quotes
» still allows $var expansions
= Use \ on selected characters
= disable any special meaning

CSE 490c -- Craig Chambers 34

Examples of quoting

cp t.txt "a file name with spaces.txt"
= 2 arguments

echo "\$path is $path”
= 1 argument

echo '$path is' $path
= 2 arguments

echo \$path is $path
= 3 arguments

CSE 490c -- Craig Chambers 35

An advanced command: grep

= grep regularExpression fileName...

» search the named file(s) for all lines that match
(anywhere) the given regular expression, and
print them out

= egrep, fgrep are variations that have slightly
different regex languages

» grep —v regkx fileName...

= prints lines that don't match
= Regular expressions are like filename
patterns, but more powerful

» Several Unix commands have similar regular
expression sublanguages, so good to know

CSE 490c -- Craig Chambers 36

Regular expressions

= Like filename patterns, except different
special characters
= . matches any character (like ?)

= re* matches zero or more occurrences of the
previous regular expression re
= can use (...) to bracket a regex to repeat
» or on some greps, \(...\)
= ¥ regex is same as * filename pattern

= (What does a(b.c)*d match?)

CSE 490c -- Craig Chambers 37

More regular expressions

= [...] notation is similar to filename
meaning

= But also have [~...] to match anything
except|...]

n (rel|re2|...) is similar to filename set
patterns
= or on some greps, \(rel\|re2\|...\)

= \c matches ¢
= \ disables any special meaning of ¢

CSE 490c -- Craig Chambers 38

Matching start or end of line

= ~ at the front of a regex means that
the regex must start matching at the
start of a line

= $ at the end ... at the end of a line

= grep 'A}$' *.java
= matches lines that are just }

CSE 490c -- Craig Chambers 39

grep quiz

= Print out all the abstract class and
interface declarations in some .java files

= Find all lines in the .java files that
reference System.out.print or
System.out.println

= Print all non-blank lines in a file

CSE 490c -- Craig Chambers 40

Another adv. command: sed

= sed —e command fileName...

= sed can be used to perform edits to the input
file(s), printing out the result
= command is a special sed command
» can have as many —e command arguments as desired
= can omit —e if only one command

= lots of possible script commands
= [how to find out?]
= we'll look at one: the s command

CSE 490c -- Craig Chambers 41

String replace using sed

= sed 's/ regexj replacement/g' fileName

= finds all occurrences of phrases matching
regex in input file

= replaces each with replacement
= if leave g off, then only replace first match
= / can be any character

CSE 490c -- Craig Chambers 42

Bound substrings

= Can remember parts of phrase
matching regex, reuse them in
replacement
= & refers to whole matched phrase

= \1 ... \9 refer to corresponding matching
subphrases inside parens

» sed 's/abstract class (.*) extends/
interface \1 implements/g' file.java

CSE 490c -- Craig Chambers 43

sed quiz

= Replace all occurrences of toString with
ToString in the input file

= Extract and print all //-style comments
(just the comments!)

CSE 490c -- Craig Chambers 4

Another adv. command: find

= find dirName... options...

= do recursive searching or processing of
given directories and all the files &
subdirectories they contain, based on
options

= options can be tests that decide whether to
consider the file, or commands to perform
on that file

CSE 490c -- Craig Chambers 45

Some find tests

= -Name filenamePattern

= only match files whose names match
filenamePattern

= -type ¢ (tisfordor..)

= only match files that are plain files (f) or
directories (d) or ...

= -not, -or, (...)
= allow boolean combinations to be specified
= (and is implicit connector)

CSE 490c -- Craig Chambers 46

Some find actions

= -print

= print out the path name of the current file
= -€xec command arg... \;

= run the command

= {} in args replaced with matching name
= -prune

= don't recursively search this directory

CSE 490c -- Craig Chambers 47

find quiz

= Print out the path names of all files in
current directory whose name is
README

= Remove every file and directory whose
name is tmp or temp or ends with ~

CSE 490c -- Craig Chambers 48

Redirecting output

Redirecting output to a file

= So far, commands have appeared to always
print their results out to the screen

= Really, output goes to standard output
(stdout), which defaults to the screen
= There's also standard error (stderr), for any error

messages, wWhich also defaults to the screen

= It's easy to redirect stdout, e.g. to a file

= Good if need to to save output for later

= Good if want to use output as input file for
another command (but more on this later)

CSE 490c -- Craig Chambers 49

= command arg... > fileName
= Redirects commands stdout tdileName
= Overwrites fileName if it exists
= Use >> instead to append to file
= Leaves stderr alone

= Use >& or >>& instead to redirect both
stdout & stderr to the same file

CSE 490c -- Craig Chambers 50

Programs as stream
processors

Pipelines

= Since output redirection is easy, many Unix
programs defined to produce their output on
stdout, and then let users decide what to do
with it

= Likewise, many programs defined to take
their input from standard input (stdin), if no
explicit file arguments are given
= stdin defaults to the keyboard
= can be redirected to a file using <

= Model: stdin - program - stdout

CSE 490c -- Craig Chambers 51

= To exploit this uniform input/output
processing, can arrange sequences of
programs in pipelines

w Stdin - cmdl | cmd2 | ... | cmdN
Stdout

= grep regex *.java | more
= Is -l | grep Jan | more

CSE 490c -- Craig Chambers 52

Pipeline utilities

= Pipelining leads to lots of simple utilities that
do one thing well that can be combined to
create interesting effects
= Some sources:
= cat, echo, Is, find, diff, input file redirection
= Some filters & processors:
= grep, sed, sort, uniq, tee, wc, head, tail
= Some sinks:
= more, output file redirection

CSE 490c -- Craig Chambers 53

