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Introduction & Overview
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Goal: novice programmer =
skilled developer

= Understand and control
(and take responsibility for)
= operating system
= development environment
= program's resources
= Can work in teams
= Know testing, design strategies
= Aware of impacts on society
= Self-reliant
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Warning!

= Course is under construction
= Things will go wrong
= Feedback desired
= I'm teaching what I know and use
= There's good stuff I don't know
= You may know things I don't
= Contribute!

= Take charge of getting the most out of
this course
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Tentative outline (part 1)

= Unix, advanced cmds, scripts: 1 week

= Dev. tools, group programming: 1 week
= Testing, specifications: 1 week

» C/C++: 2 weeks

= (midterm)
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Tentative outline (part 2)

= Other dev. environments: 1 week
= Design patterns: 1 week

= Requirements, UI design: 1 week
] (ﬁnal)
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Homework and projects

= Roughly weekly
= Some exercises
= An extended group project
= A Java component
= A C component
= Testing & design & documentation parts
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"Section"

= Friday will often be different

= Discussion & debate on societal impacts of

computer systems
» Contribute your clippings
= Group project work & meetings
= Code reviews
= Guest lectures
» Contribute your knowledge

CSE 490c -- Craig Chambers

Textbooks

= C++ for Java Programmers
= Design Patterns

= (one other on being a good
programmer)
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Survey on background

= Unix?

= Java?

= C/C++?

= Program size?

= Development environments & tools?
= Can bring laptops?
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Unix
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Why study Unix?

= Contrast with insulating point-and-click OSs,
like Windows
» Understand and manage your own environment
= See a different kind of programming than
Java or C programming
= See how simple (and sophisticated) tools can
be combined to get interesting effects
= pipes
= SCripts
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Unix is widely available

= Machines running Linux (and other Unix
variants)
= ceylon, fiji, sumatra, tahiti

= From Windows machines:

= Can remotely log in to instructional Linux
machines, e.g. using Ssh Secure Shell

= Can install Cygwin!
» (How can you find out about Cygwin?)
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The shell

= When log in, get a
command shell or interpreter
= Can enter commands, see them execute
= Line-oriented
= Standard syntax:
= commandName argl1 ... argh

= Some args are ogptions, conventionally
prefixed by a hyphen

= Start in home directory
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Directories and files

= A directory is a folder containing files and
other (nested) directories
= Directories form a tree
= A directory is just a special kind of file
= Files (including directories) can have names
of any length, including just about any
characters, any number of times

= No rules about 3-character extensions
« hi.there-bob.textFile

CSE 490c -- Craig Chambers 15

Path names

= To name a file in a directory, use
dirName/fileName

= Can concatenate directory names to
form a path
= foo/bar/baz/blip
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Special directory names

= . names the current directory

= .. names the enclosing directory

= / names the root directory (sort of)

= ~ names your home directory (sort of)

= What is /foo/bar/../. ?
= Whatis /.. ?
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Some basic commands

sls
» list current directory contents
» Is - for detailed listing

= mkdir dirName...

= create one or more nested directories of given
names

= cd dirName

» change current directory to named one
= can be a full path name, as with most commands

] de
» print name of current directory
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Viewing files

= cat fileName...

= print out contents of one or more files
= more fileName...

= Same as cat, but only a page at a time
w Ipr fileName...

= print out a file onto the "current" printer

= Ipr —PprinterName fileName for a specific
printer
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Copying and moving files

= Cp fromName toName

= mv fromName toName

= copy or move a file from one name to
another (which shouldn't exist yet)

» Cp fromName... dirName
= mv fromName... dirName

= COpy or move one or more files to an
existing directory (keeping same names)
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Removing files and directories

= rm fileName...

= remove one or more files
= rmdir dirName...

= remove one or more (empty) directories
= rm —r fileName...

= remove one or more files, and their contents if
directories

= Know what you're doing!
= (What does rm —r / do?)
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Creating and editing files

= emacs fileName

= emacs is a very powerful & customizable
editor

= lots of control-key commands

= X-windows versions support mouse clicking
and menu bars

= worth learning; we'll study more later

= Under cygwin, can do
notepad fileName
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Finding out
more about commands

= man commandName

= prints out manual on commandName
= many cool options on earlier commands!

= man —k keyword

= prints out all manual page titles that
include keyword

= (What does man man do?)
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Permissions

= Every file has an owner and a group

= Owner is usually the person (login id) who created
the file (see chown)

= Group is the group that can share access to the
file (see chgrp, groups)

= Every file has permissions, which specify
whether owner/group/everyone can
read/write/"execute" the file
= execute for a directory: can look inside
» (see chmod, Is —1)
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Filename patterns

= Can name a bunch of files using a filename
pattern
» Embedded in regular filenames

= Wildcards
= * matches a sequence of 0 or more chars
= ? matches exactly one char

= Expanded into multiple arguments, based on
matching file/pathnames

cp test?.htm* ~/www
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More filename patterns

= Character ranges
» [aeiou] matches a lower-case vowel
» [0-9A-Fa-f] matches a hexadecimal digit
= Sets
» {foo,bar,baz} matches foo, bar, or baz
» {foo,} matches foo or empty
» can have patterns embedded in the list
= If more than one pattern, all combinations

Is {,/usr{,/local}}/[Bb]in
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Customizing the shell

= Shell has several ways to customize its
behavior
= Details depend on your default shell

= I'll assume csh/tcsh; bash is a popular
alternative
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Shell variables

n set var... var=value ... var=(value...) ...
» adds/changes one or more settings
= set alone prints out all settings
» unset var... removes one or more settings

set nonomatch history=100 autolist filec
set prompt = "%m:%~#%h\>"

= man csh or man tcsh to see all possibilities
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Environment variables

= printenv

= prints out all settings
» setenv varName value

= adds/changes a setting (no "="1)
= unsetenv varName

= removes a setting

= Subtle distinction between vars and env vars
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Printing out var values

= $varName as command argument is
replaced with value of variVame

= echo arg...
= just prints out its arguments (silly, right?)

= echo $varName
= prints out the value of varName
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The path variable

= Unix finds commands using the path
variable
= set path = (... a list of directories ...)
= (How to print out your current path?)
= When the shell sees
command arg...
it looks for an executable file named
command in a directory on the path,
searching in order, and then runs it
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Adding to the path

= Can add your own directories of commands
by changing the path variable
» Keep all the old directories!
= To add ~/bin to the path [why the front?]:
» set path = (~/bin $path)
= Now can put my programs in ~/bin
»« mv myProg ~/bin
» rehash
= tell the shell to recompute what programs are available
= myProg myArgs... now works, from anywhere!
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Saving customizations

= When you log in, shell automatically
runs commands in the file ~/.cshrc (or
~/.bashrc or ~/.profile or ...)

= For any settings you want all the time
(e.g. the expanded path setting), add
them to your .cshrc file, and you'll get
them automatically when you log in
next time
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Quoting

= Sometimes want to stop shell from doing
filename pattern expansions, or $var
expansions, or argument splitting on spaces
= Can do this in several ways:
= Surround with single quotes
= turn off all expansions
= Surround with double quotes
» still allows $var expansions
= Use \ on selected characters
= disable any special meaning
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Examples of quoting

cp t.txt "a file name with spaces.txt"
= 2 arguments

echo "\$path is $path”
= 1 argument

echo '$path is' $path
= 2 arguments

echo \$path is $path
= 3 arguments
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An advanced command: grep

= grep regularExpression fileName...

» search the named file(s) for all lines that match
(anywhere) the given regular expression, and
print them out

= egrep, fgrep are variations that have slightly
different regex languages

» grep —v regkx fileName...

= prints lines that don't match
= Regular expressions are like filename
patterns, but more powerful

» Several Unix commands have similar regular
expression sublanguages, so good to know
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Regular expressions

= Like filename patterns, except different
special characters
= . matches any character (like ?)

= re* matches zero or more occurrences of the
previous regular expression re
= can use (...) to bracket a regex to repeat
» or on some greps, \(...\)
= ¥ regex is same as * filename pattern

= (What does a(b.c)*d match?)
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More regular expressions

= [...] notation is similar to filename
meaning

= But also have [~...] to match anything
except|...]

n (rel|re2|...) is similar to filename set
patterns
= or on some greps, \(rel\|re2\|...\)

= \c matches ¢
= \ disables any special meaning of ¢
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Matching start or end of line

= ~ at the front of a regex means that
the regex must start matching at the
start of a line

= $ at the end ... at the end of a line

= grep 'A}$' *.java
= matches lines that are just }
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grep quiz

= Print out all the abstract class and
interface declarations in some .java files

= Find all lines in the .java files that
reference System.out.print or
System.out.println

= Print all non-blank lines in a file
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Another adv. command: sed

= sed —e command fileName...

= sed can be used to perform edits to the input
file(s), printing out the result
= command is a special sed command
» can have as many —e command arguments as desired
= can omit —e if only one command

= lots of possible script commands
= [how to find out?]
= we'll look at one: the s command
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String replace using sed

= sed 's/ regexj replacement/g' fileName

= finds all occurrences of phrases matching
regex in input file

= replaces each with replacement
= if leave g off, then only replace first match
= / can be any character
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Bound substrings

= Can remember parts of phrase
matching regex, reuse them in
replacement
= & refers to whole matched phrase

= \1 ... \9 refer to corresponding matching
subphrases inside parens

» sed 's/abstract class (.*) extends/
interface \1 implements/g' file.java
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sed quiz

= Replace all occurrences of toString with
ToString in the input file

= Extract and print all //-style comments
(just the comments!)
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Another adv. command: find

= find dirName... options...

= do recursive searching or processing of
given directories and all the files &
subdirectories they contain, based on
options

= options can be tests that decide whether to
consider the file, or commands to perform
on that file
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Some find tests

= -Name filenamePattern

= only match files whose names match
filenamePattern

= -type ¢ (tisfordor..)

= only match files that are plain files (f) or
directories (d) or ...

= -not, -or, (...)
= allow boolean combinations to be specified
= (and is implicit connector)
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Some find actions

= -print

= print out the path name of the current file
= -€xec command arg... \;

= run the command

= {} in args replaced with matching name
= -prune

= don't recursively search this directory
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find quiz

= Print out the path names of all files in
current directory whose name is
README

= Remove every file and directory whose
name is tmp or temp or ends with ~
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Redirecting output

Redirecting output to a file

= So far, commands have appeared to always
print their results out to the screen

= Really, output goes to standard output
(stdout), which defaults to the screen
= There's also standard error (stderr), for any error

messages, wWhich also defaults to the screen

= It's easy to redirect stdout, e.g. to a file

= Good if need to to save output for later

= Good if want to use output as input file for
another command (but more on this later)
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= command arg... > fileName
= Redirects commands stdout tdileName
= Overwrites fileName if it exists
= Use >> instead to append to file
= Leaves stderr alone

= Use >& or >>& instead to redirect both
stdout & stderr to the same file
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Programs as stream
processors

Pipelines

= Since output redirection is easy, many Unix
programs defined to produce their output on
stdout, and then let users decide what to do
with it

= Likewise, many programs defined to take
their input from standard input (stdin), if no
explicit file arguments are given
= stdin defaults to the keyboard
= can be redirected to a file using <

= Model: stdin - program - stdout
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= To exploit this uniform input/output
processing, can arrange sequences of
programs in pipelines

w Stdin - cmdl | cmd2 | ... | cmdN
Stdout

= grep regex *.java | more
= Is -l | grep Jan | more
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Pipeline utilities

= Pipelining leads to lots of simple utilities that
do one thing well that can be combined to
create interesting effects
= Some sources:
= cat, echo, Is, find, diff, input file redirection
= Some filters & processors:
= grep, sed, sort, uniq, tee, wc, head, tail
= Some sinks:
= more, output file redirection
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