Programming in Groups

CSE 490c -- Craig Chambers 104

What's different about
groups?

= Multiple developers on a project
» Can divide the work!
» Can benefit from everyone's ideas & skills!

= Challenges

» Coordinate changes & extensions to shared source
code base
= CVS
= Pair programming
» Communication, organization, management of
people

CSE 490c -- Craig Chambers 105

CVS

= Coordinate changes by multiple people
sharing one source base

= Support multiple versions of software
= Allow remote development

CSE 490c -- Craig Chambers 106

Main concepts

= There's one central repository of all the
stuff being managed by CVS
= Source files, makefiles, documentation,
even binaries
= Each user has a checked-out working
copy of the repository

= Can check out all or just part of the
repository

CSE 490c -- Craig Chambers 107

Coordinating multiple users

= Users freely edit their own working copy,
independent of all other users

= Don't (need to) care if someone else has modified
the same file!

= Never bothered by someone else's buggy code!
= When happy with changes, a user commits
their changes to the central repository
= When want to get other users' changes into
local working copy, a user updates any
changes from the repository to the copy

CSE 490c -- Craig Chambers 108

Managing changes

= What if two people have changed the same
file?
» One commits to the repository
» Then, the other wants to update from the
repository
= CVS update will automatically integrate
changes
» If not to same lines, then all's dandy

» If overlapping lines, then CVS will report a merge
conflict

= User can then edit the file by hand to resolve conflicts

CSE 490c -- Craig Chambers 109




Observing changes

= Don't wait till update to see changes!
= Can use CVS's diff command to
compare repository's version to working
copy's version
= See what changes have happened to the
repository since you last updated

= See what changes will happen if you try to
update the repository

CSE 490c -- Craig Chambers 110

Versions

= Each commit creates a new version of the
updated files

= But all old versions are still there!

= Can easily check out a copy of an older
version of any part of the repository
= To look at different versions of a file over time

= To revert back to an older, maybe more stable
version of the software

= Can use CVS even by a single user, to get
version management

CSE 490c -- Craig Chambers 111

Starting a repository

= Pick a directory to be the CVS
repository: cvsDir

= Must be editable by all who will be sharing
the repository

= cvs —d cvsDirinit

CSE 490c -- Craig Chambers 112

Creating a CVS project

= Assume you have some existing directory tree
you'd like to put under CVS control: myDir
» If not, then create an empty directory
= Pick a name for the software: myProject
= cd myDir
= cvs —d cvsDirimport —m "adding myProject" \
myProject myName start

= Remove myDir, after verifying that later
commands work

CSE 490c -- Craig Chambers 13

Checking out a working copy

= cd someplace where you want the working
copy created

= Different from the initial imported sources
» cvs —d cvsDir checkout myProject

» Creates a directory named myProject containing
all sources imported under this name

= cd myProject
= Then go ahead and edit away!
= Every user does this (and all later commands)

CSE 490c -- Craig Chambers 114

Adding and removing files

= Must tell CVS if you want to change
what files are under CVS control

= Ccvs add fileName...

= Add file(s) to CVS control
= cvs remove —f fileName...

= Remove file(s), and from CVS control
= Neither affects the repository (yet)

CSE 490c -- Craig Chambers 115




Committing changes

= Once you're happy with your changes,
commit them to the repository

= cd myProject

= CVS commit

= Will create an editor window to let you describe
the changes, in a permanent log
= —M "message’ option to skip editor
= Does any adds and removes to the repository
» Remove keeps older versions!
= Bumps version numbers of changed files

CSE 490c -- Craig Chambers 116

Updating changes

= If someone else changes the repository,
eventually you'll want to get those
changes integrated into your working
copy

= cd myProject

= Cvs update
= Reports updated files, and conflicts if any

= Do update before commit

CSE 490c -- Craig Chambers 117

Looking at differences

= What have I changed in my working
copy since I last updated?
= cvs diff

= What has changed in the repository
since I last updated?
= cvs diff -rBASE —rHEAD

= Do these before update or commit!

CSE 490c -- Craig Chambers 118

More in CVS

= Remote repositories, ssh
= Symbolic tags, e.g. RELEASE_1_0
= Version history
= Multiple branches of development
= Handling third-party software
» "vendor branches"
= Actions upon commit, etc.
» E.g. sending mail
= Tracking who's editing what files

CSE 490c -- Craig Chambers 119

My wish: nested CVS

= The scenario:

= I want to check out a working copy of
some shared sources

« I want to then manage my own edits using
CvS
» Multiple internal versions
» Copies at home & at work
= I want to treat my working copy as if it
were a repository, recursively

CSE 490c -- Craig Chambers 120

What more do groups need?

= CVS is a mechanism, not a policy or a
management plan
= Groups need to communicate!
= CVS can help a very little bit
= Groups need to have a management plan!
» Who's responsible for what?
= Who's responsible for group management?
» How to divide up work?

» What are the policies for testing, committing,
debugging?

CSE 490c -- Craig Chambers 121




Pair programming

= One interesting idea: two programmers
sitting together at one computer working
together (well) is more productive than those
two programmers working separately
= Productivity over the long run, including avoiding

design flaws and implementation bugs

= Some advanced development organizations
use pair programming

w Tryit!

CSE 490c -- Craig Chambers 122




