Arrays

= Key differences from Java arrays:
= Created with a fixed length, cannot change

= Length is not stored as part of array
= No bounds checking

= Arrays and pointers interchangeable

CSE 490c -- Craig Chambers 208

Array declarations

= Allocating a new array
int x[10]; // an array of 10 integers
char* x[20]; // an array of 20 pointers-to-chars
= Must use constant for array size
= Note: const int n = 20; int x[n];
= Then can use a[i] notation for reading
& writing array elements
x[i] = x[4] + 1;
= No length stored with array

CSE 490c -- Craig Chambers 209

Arrays in memory

= For a declaration of the form
type namd len);
memory is allocated to hold /en copies
of type values

= No length field allocated

= nameis a pointer to the first element

CSE 490c -- Craig Chambers 210

Arrays as pointers

= An array can be treated as a pointer to
its first element

int a[20];
int*xb = a; /| works
int* ¢ = &a[0]; /] same effect

= Look at memory layout to see why

CSE 490c -- Craig Chambers

Arrays in the heap

= Can allocate arrays in the heap using
new

= Returns a pointer to the first element
int* a = new int[20];

= Can deallocate like any pointer to heap
delete a;

CSE 490c -- Craig Chambers 212

Array function arguments

= Can pass an array to a function, or return an
array

» Actually, returning the pointer to the first element

= For arguments (but not results), can declare
an array whose length is omitted
int* f(int a[]) {
return a;

}

» Allows arrays of different lengths to be passed to
the function

CSE 490c -- Craig Chambers 213




Using argument arrays

= Q: If I get an array as an argument, how can
I use it? How do I know how long it is?

= A: Must pass the length of the argument
array as an extra argument

Multidimensional arrays

= Can declare matrices/arrays with
multiple dimensions
= Like Java, they're declared & accessed as
arrays of arrays of arrays of ...

= Unlike Java, one large memory block is
allocated for the whole matrix
= "row-major order"

CSE 490c -- Craig Chambers 215

int x[20]; void f(int a[], int n) {
for (inti =0;i<n;i++){
f(x, 20); , a[i] = a[i] + a[n-i-1];
¥
CSE 490c -- Craig Chambers 214
Example

const int numRows = ...;
const int numCols = ...;
double m[numRows][numCols];
for (int r = 0; r < numRows; r++ {
double* row = m[r]; // OK: pointer to rth row
for (int ¢ = 0; ¢ < numCols; c++) {
int elem = row[c];
// int elem = m[r][c]; also OK
}
}

CSE 490c -- Craig Chambers 216

Strings

= In Java, String is a library class, with
lots of cool operations
= Plus, special "..." syntax and + operation
= In C, a string is just an array of chars,
ending in a "\0' (null) character
= Similar "..." syntax, implicitly includes "\0'
= #include <string.h> to get lots of library
functions that work over null-terminated
arrays of characters, a.k.a. strings

CSE 490c -- Craig Chambers 217

Issues

= Like all arrays, no length stored in a
string

= Must search for null character to find
length

= Cannot store a null character in a string
= Not suitable for binary data
= Must guard in face of external input

= char* and char[] both suggest "string",
but not necessarily

CSE 490c -- Craig Chambers 218

String operations

= Do "man string" to find out many string
operations
= Generally, less friendly than Java, due to lack of
internal length and avoidance of allocation
= E.g.:
= int strlen(char* s);
= char* strcpy(char* dest, char* src);
= char* strdup(char* src);
= int strcmp(char* s1, char* s2);

CSE 490c -- Craig Chambers 219




