CSE 490c -- Craig Chambers

What's different about C?
(vs. Java)

n It's older
» Procedural, not object-oriented
» Explicit, low-level memory model

» Requires manual memory allocation and de-
allocation

» Unsafe basic data structures

» E.g., no array bounds checking
» Requires explicit interface (header) files
» Fewer standardized libraries

CSE 490c -- Craig Chambers

What's good about C?

n C is appropriate when the extra control
over data & performance trade-offs is
required
n Embedded software
» Low-level systems programs
» Run-time systems of higher-level

languages

n Inappropriate when a higher-level
language would be fine

CSE 490c -- Craig Chambers

Why learn C?

n Complement knowledge of higher-level
languages e.g. Java & csh

» Understand trade-offs between different
styles of languages

n Lots of existing software written in C or
C++, some of it appropriately
» And lots of future software

n Impact on society from security
problems caused by poor C code J

CSE 490c -- Craig Chambers

What about C++?

n C++ is (almost) a superset of C

» Adds object-oriented features, like classes

» Similar to but more powerful & complicated
than Java's classes

» Adds templates

» Similar to but more powerful & complicated
than Java 1.5's generic types

» Adds some nicer syntax for some things
n We'll focus on the C subset of C++

CSE 490c -- Craig Chambers

A trivial C(++) program

#i ncl ude <stdio. h>

int main(int argc, char** argv) {
if (argc > 0) {
fprintf(stderr, "bad args\n");
return —1;
}
printf("hello, class!\n");
return O;

}

CSE 490c -- Craig Chambers

Some comparisons to Java

n Similar statements & expressions as Java
(e.g. i f, function calls, return)

n Similar data types to primitive ones in Java
(e.g.int, char)
» But has pointer data types too (e.g. char **)

n Cis procedural, not 0O
» Functions are declared at top-level

» Variables can be declared at top-level too
» "Global variables"; they're bad style

n Libraries "imported" using #i ncl ude

CSE 490c -- Craig Chambers

Program entry point

n A C program starts with the unigue
procedure named nai n

n Optionally takes a length and an "array
of strings" of that length which are the
command line arguments
» "Array of strings" = char **; ugh

n Returns the program's exit code
» 0 = success, non-zero = failure

CSE 490c -- Craig Chambers

Simple text output

n Java:
Systemout.print("hi ");
Systemout. printin("there");

n C:

#i ncl ude <stdi o. h>

printf("hi ");
printf("there\n");

CSE 490c -- Craig Chambers

Tools

n gcc —c file. c
» Compile C source file. c into object file. o
n C++ source uses . C, . cpp, . CC, OF . C++
n gcc -o program file. o ...
» Link one or more object file. o into executable
program
n gdb program
~ Debug program
» Compile with - g option for source-level debugging
» Run gdb under enacs!

CSE 490c -- Craig Chambers

C memory model

n C exposes the memory resources of the
underlying machine
 Static, stack, and heap memory,
composed of bits, bytes, and words
» Allows programmers to control where their data
values are stored and how much space they
consume
n Different memory regions have different costs
for use, different requirements for correct use
» Programmers can make explicit cost trade-offs
» C puts correctness burden on programmers

CSE 490c -- Craig Chambers 11

Static (a.k.a. global) memory

n Fixed size
n Allocated when program starts
n Deallocated when program ends

n Top-level (global) variables stored here
» Akin to Java's static variables

CSE 490c -- Craig Chambers

Stack memory

n Variable (total) size

n A fixed-size chunk is allocated
whenever a procedure is called

n Deallocated automatically when the
procedure returns

n Procedure arguments and local
variables stored here, just as in Java

CSE 490c -- Craig Chambers 13

Heap memory

n Variable (total) size

n Allocated on demand, by a new
expression (or a mal | oc(..) call)
~ Like Java's new expression

n Deallocated on demand, by a del et e
statement (or a free(..) call)

» Java does this automatically via garbage
collection

CSE 490c -- Craig Chambers 14

What's in memory?

n Each region of memory made up of a
sequence of bits
» A bit is a single binary digit, a0 ora 1
n 8 bits are grouped into a byte
» Standard unit of memory, e.g. megabytes
n Some number of bytes are grouped into a
word
» Typically 4 bytes = 1 word (32-bit machines)
n Sometimes 8 bytes = 1 word (64-bit machines)

CSE 490c -- Craig Chambers 15

C numeric data types

n char: 1 byte
n short: 2 bytes
n int,long, |l ong | ong: 4 bytes — 2 words

n fl oat: 4 bytes
n doubl e: 8 bytes

n No bool ean; just use i nt

CSE 490c -- Craig Chambers

Variable declarations

n Each variable declaration allocates space to
hold the variable's value

n Size of memory allocated determined by type of
variable

» Memory region determined by whether the
declaration is of a global or a local variable

n Variable names the allocated memory block
n Allocated memory isn't initialized
automatically!
» Unlike Java
» Can be unsafe, bug-prone!

n In C (not C++): all var dedls at start of scope

CSE 490c -- Craig Chambers 17

Addresses and pointers

n Each byte of memory has an address

» Like an integer index into an array of bytes
n Can store an address in memory

~ A pointer
n Can dereference the pointer to read or

update the contents of the pointed-to
memory

» Java's object references are pointers

CSE 490c -- Craig Chambers

Pointers in C

n C has a new kind of type: a pointer

« Pointer itself consumes 1 word of memory

~ Also specifies the type of the pointed-to memory
» Can declare variables to be of pointer type

» [Crappy syntax; don't declare multiple pointer
variables with the same declaration!]

n Examples:
int* pi; // a pointer to an i nt
char* pc; [/ apointer to a char

int** ppi; //a pointer to a pointer to an i nt

CSE 490c -- Craig Chambers

19

Creating pointer values

n Simple way to make pointers: take the
address of a named variable
n &var
» Pointer target type is type of var
n Ex:
int i =5;
int* pi = & ;
int** ppi = π

CSE 490c -- Craig Chambers 20

Dereferencing pointers

n Given a value of pointer type, can:
» Read the memory it points to
» Update (assign to) the memory it points to
Collectively called dereferencing the pointer
n Use * prefix operator to dereference a
pointer, on either side of assignment
n Ex.
int i =5;
int* pi = &;
*pi = *pi o+ 1;
// now, what's the value of i ? of pi ?

CSE 490c -- Craig Chambers

21

More on dereferencing

n Can use a null pointer in place of a valid
pointer
n Exiint* pi = NULL;
o (use NULL if #i ncl ude <stdi o. h>, 0 otherwise)
» Dereferencing a null pointer is illegal and can do
bizarre things (often "segmentation violation™)
» Not as fail-stop as in Java
n What if dereference an uninitialized pointer?
int* pi;

*pi = *pi + 1

CSE 490c -- Craig Chambers 22

Pointers to heap memory
(nicer but C++-specific version)

n Can also create pointers by allocating
new heap memory, and getting its
address
» "new type' (an expression):

» allocates (but does not initialize!) memory in
the heap to hold a value of fpe
» returns its address (which has type &ype*)
n EX:
int* pi2 = newint;
int** ppi2 = newint*;

CSE 490c -- Craig Chambers

Uglier C version

n Use mal | oc fn call instead of new
» mal | oc takes the number of bytes to allocate
(not the type; ugh)
» mal | oc returns a char * (not at ype*; ugh)
n C++:
int* pi = newint;

n C

#include <stdlib. h>

i“}n* pi = (int*)malloc(sizeof(int));

CSE 490c -- Craig Chambers 24

Deallocating heap memory
(C++-specific version)

n When done with heap-allocated memory,
must explicitly deallocate it
 "del et e expr” (a statement):

. evaluates expr, which should yield a pointer to heap
memory

« deallocates the memory pointed to (not the pointer!),
making it available for reuse for future heap allocations
n Ex:

int** ppi2 = newint*;

del ete ppi2;

CSE 490c -- Craig Chambers 25

C version

n Use f r ee function call instead of del et e
statement

n C++:

int** ppi2 = new int*;
del ete ppi2;

n C
#i ncl ude <stdlib. h>

int** ppi = (int**)malloc(sizeof(int*));

fr ee(ppi);

CSE 490c -- Craig Chambers 26

Some possible deallocation errors

n Static type checking ensures del et e only
applied to a pointer

n What if try to deallocate non-heap memory?

n What if forget to deallocate heap memory?
A storage leak

CSE 490c -- Craig Chambers 27

Lifetime of pointers

n Pointers may not be valid indefinitely
n A pointer becomes invalid when the memory it
points to is deallocated
A dangling pointer
» Dereferencing an invalid pointer can cause
undefined bad behavior (crash, data loss, security
hole, ...)
n When does a pointer to a global variable
become invalid? To a local variable? To heap-
allocated memory?

CSE 490c -- Craig Chambers 28

Java & pointer lifetime errors

n Java's references to objects are all
pointers

n But Java doesn't allow the program to
ever reference an invalid pointer
» Cannot create pointers to locals
» Cannot explicitly deallocate memory

n Java also ensures no storage leaks

CSE 490c -- Craig Chambers 29

