Assignment

n Consider x = vy;
n In Java, this makes x refer to whatever y
refers to
» x and y share the object
n In C, this shallow-copies y to x
if x & y are numbers, they're copied
if x & y are pointers, then the pointer is copied,
but not what's pointed to
if x & y are structs, then the whole struct is
copied, but not anything pointed to by that struct
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An example

List listl;

List list2;

...1'l a bunch of operations to build| i st 1
list2 = listl; // whatdoes this do?

...1'l abunch of ops to extend| i st 1
/'l now whats the state of | i st 1?2 1ist2?
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A variation
List* listl;
List* |ist2;
...1'1 a bunch of operations to build| i st 1
list2 = 1listl; [/ whatdoes thisdo?

...11 abunch of gps to extend| i st 1
/'l now what's the state of | i st 1?2 1ist2?
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Tips

n Watch out for assignments doing
(partial) copies behind your back

» Using pointers to non-trivial data structures

avoids this problem

It's good to define your own (deep)
copy functions that copy exactly what
you want copied to duplicate the
abstract state of your data structure

S
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Arrays

n Key differences from Java arrays:
» Created with a fixed length, cannot change

» Length is not stored as part of array
» No bounds checking

» Arrays and pointers interchangeable
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Array declarations

n Allocating a new array
int x[10]; //an array of 10 integers
char* y[20]; //an array of 20 ptrs-to-chars

» Must use constant for array size
#define LEN 30
doubl e z[ LEN];

n Use a[i] notation to read/write array elems
x[i] = x[j] + 1;

» No length stored with array
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Arrays in memory

n For a declaration of the form
type namge[l en];
memory is allocated to hold | en copies
of t ype values

n No length field allocated

n narme is a pointer to the first element
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Arrays as pointers

n An array can be treated as a pointer to
its first element
int a[20];
int* b = a; Il works
int* ¢ = &[0];// same effect

n Look at memory layout to see why
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Arrays in the heap

n Can allocate arrays in the heap using
new

» Returns a pointer to the first element
int* a = newint[20];

n Can deallocate like any pointer to heap
delete a;
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Array function arguments

n Can pass an array to a function, or return an
array
» Actually, returning the pointer to the first element

n For arguments (but not results), can declare
an array whose length is omitted
int* f(int a[]) {
return a;
}
» Allows arrays of different lengths to be passed to
the function
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Using argument arrays

n Q: If I get an array as an argument, how can
I use it? How do I know how long it is?

n A: Must pass the length of the argument
array as an extra argument

int x[20]; void f(int a[], int n) {
for (int i =0; i <n; i++) {
f(x, 20); ) a[i] = a[i] + a[n-i-1];
}
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Multidimensional arrays

n Can declare matrices/arrays with
multiple dimensions
~ Like Java, they're declared & accessed as
arrays of arrays of arrays of ...

» Unlike Java, one large memory block is
allocated for the whole matrix
» "row-major order"
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Example

#define nunRows 10

#define nunCols 20

doubl e n{ nunRows] [ nunCol s] ;

for (int r =0; r < nunRows; r++) {
doubl e* row = n{r]; // OK:ptrtor row
for (int ¢ =0; ¢ < nunCols; c++) {

int elem=rowc]; // == nr][c]

}

}
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Strings

n InJava, String is a library class, with lots of
cool operations
~ Plus, special " ..." syntax and + operation
n In C, a string is just an array of chars, ending
ina'\ 0" (null) character
 Similar " ..." syntax, implicitly including ' \ 0"
» #include <string. h> to get lots of library

functions that work over null-terminated arrays of
characters, a.k.a. strings
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Issues

n Like all arrays, no length stored in a string
» Must search for null character to find length
» Different than array length!

n Cannot store a null character in a string
» Not suitable for binary data
» Must guard in face of external input

n char* and char[] both suggest "string",
but not necessarily
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String operations

n Do "man string" to find out many string
operations
 Generally, less friendly than Java, due to lack of
internal length and avoidance of allocation
n Eg
nint strlen(char* s);
nint strcnp(char* s1, char* s2);
n char* strdup(char* src);

n char* strncpy(char* dest, char* src,
int max);
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Casting

n C programs allow unrestricted casting from
one type to another
» Some casts are conversions
» E.g., between different numeric types
» Some casts restrict or reveal information

» E.g. between pointers to structs with more or fewer
fields

» voi d* is the implicit "supertype" of all pointers, akin to
Qbj ect inJava
» Some casts just reinterpret the bits
» E.g. between an int and a pointer
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"Generic" code

n One use for casting to write one piece of
code that's generic across many possible
client types

n E.g., a Li st of things, where we don't want
to restrict what kind of things we can store

In Java: use Obj ect as "universal" type, cast

arguments to Obj ect (implicitly) when put in and

cast back to real type (explicitly) when take out
» Except that primitive types aren't Obj ect s L

In C: | ong, or voi d*, or unions, or ...

In C++: templates
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Example

struct Link {
voi d* dat a;
Li nk* next;
b
Li nk}* addFi rst (Link* list, void* data) {

Li nk* nyList = NULL;
nyLi st = addFirst(nyList, "a string");
char* firstElem = (char*) nyList->data;
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A taste of templates

tenpl ate <class T> struct Link {
T data;
Li nk<T>* next;
s
tenpl ate <class T>
L}L n;<<T>* addFi rst (Li nk<T>* list, T data)

Li nk<const char*>* nyList = NULL;
nyLi st = addFirst(nyList, "a string");
const char* firstEl em = nyLi st->dat a;
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Input/output library functions

n printf has many ways of producing
formatted output
n cout is C++ alternative that many prefer
n scanf is way to get input from stdin
n Ci n is C++ alternative
n note: pass pointers as arguments
n look up f open, fread, fwite,
f cl ose to do file I/O
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More useful features

n "const " can be put before a type to make
that thing read-only
» E.g. "const char*"is a pointer to a character
(or character array) that can be read but not
modified
» Enums are a nice way to declare a bunch of
named integer constants and a integral type
» E.g.: enum Fl agCol or {RED, WH TE, BLUE};
n Refs (&) are an alternative to pointers (*)
that are never null and that automatically
dereference

» Good for call-by-reference arguments
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