Managing recompilation

n What happens if a source file is changed?
» Possibly need to recompile all the files that
referenced it
n How to do this?
~ IDE: built-in
» So far: by hand
 Call j avac on out-of-date source files, maybe re-j ar
. But: tedious, error prone
» Tool-based approach: make a tool for it!

CSE 490c -- Craig Chambers 18

make

n make is a great tool that manages any kind
of process with dependencies

n A Makefi | e describes rules for when
something depends on something else, and
what to do to make it up-to-date
~ based on file modification times stored with every

Unix file

n Invoking make then runs these rules to
decide what, if anything, needs to be done to
bring things up-to-date

CSE 490c -- Craig Chambers 19

Dependencies

n Makef i | e includes lines of the form
target... . source...

» Means that each target depends on each
source

» If any of the sources are modified, then all
the targets are considered out-of-date

n Example:
mai n. cl ass: nain.java

CSE 490c -- Craig Chambers 20

Actions

n For each dependency, can add an
action to perform to bring the target(s)
up-to-date
» Action is a series of shell command lines

» each line must start with a tab
» use /bin/sh syntax
n Example:
mai n. cl ass: main.java
javac nmin.java

CSE 490c -- Craig Chambers 21

Invoking make

n meke target..

» uses Makef i | e in current directory to bring one
or more fargets up to date, using their actions

» does nothing if all targets up to date
« if omit target arguments, then rebuild the first
target in Makefile
« the default target
n Example:
> make main. cl ass

javac nain.java
>

CSE 490c -- Craig Chambers 22

Controlling output

n By default, make prints out each action it
performs

n Can disable printing an action by prefixing it
with @

n Example:
mai n. cl ass: main.java
@-cho Conpiling main.java...
@ avac nmain.java
> nmake nmain. cl ass
Conpi | i ng mai n.java...
>

CSE 490c -- Craig Chambers 23




Dependency patterns

n Often have a simple rule over all files
with certain naming patterns
» Can use %in the target and source

» Rule applies to any real targets and
sources where %is replaced by the same
thing on both sides

n Example:
% class: %java
» Means that X cl ass depends on X. j ava

CSE 490c -- Craig Chambers 24

Actions for patterns

n Actions for dependency patterns need to
have patterns too
» $@ the target
n $”: the source(s)
n $*: the thing matched by %in the rule
n Example:
%class: %java
@cho —n "conpiling class $* "
@cho "($" to $@"

javac $°

CSE 490c -- Craig Chambers 25

Dependency trees

n One target can depend on another
target, ad nauseum
» Dependency rules form a DAG (directed
acyclic graph)
n make figures out how to rebuild a

target by first making sure its sources
are up-to-date, which may cause nake
to first rebuild them, recursively

CSE 490c -- Craig Chambers 26

Example dependency tree

% class: % java

javac $°

mai n.jar: main.class hel per.class
jar cfv $@$"

install: main.jar

cp $" ${HOVE}/bin

> nmake install

javac main.java

javac hel per.java

jar cfv main.jar main.class hel per.class
cp main.jar /hones/iws/nyLogin/bin

CSE 490c -- Craig Chambers 27

Makefile variables

» Can define variables in Makefi | es, and use
them in rules and actions
~ VARNAME = REPLACEMENT...
» Referenced using ${ VARNAME}

n Example:
JAVAC FLAGS = -g
%class: %java
@cho "conpiling class $*"
javac ${JAVAC FLAGS} $"

CSE 490c -- Craig Chambers 28

Substitutions in make vars

n Can do replacements in variables
n ${ VAR oldPat=newPat}
n oldPat and newPat can contain %

» match each word in ${ VAR} against
oldPat, where %can match anything

~ replace matches with new
» if new contains % substitute with what %
matched

n Good for adjusting extensions, prefixes

CSE 490c -- Craig Chambers 29




Examples of substitutions

SRCS = A java B.java C.java
OBJS = ${SRCS: % j ava=% cl ass}
default: ${OBJS}

INSTALL_DIR = ${HOVE}/ bin
I NSTALLED _OBJS =\
${ OBJS: %${ | NSTALL_DI R}/ %
${INSTALL_DI R}/ % cl ass: % cl ass
cp " 3@
install: ${INSTALLED OBJS}

CSE 490c -- Craig Chambers 30

Make quiz

n Extend Makefi | e so that "make cl ean"
removes all . cl ass files

n Add a rule so that I can say "make
foo. j ava. ps", for any foo. j ava, to format
my Java source file using enscri pt -2r
into a nicely formatted . ps file

n Add a rule to put all my . cl ass files into a
single . j ar file

n Add a variable defining all the . j ava files in
my application, and only clean, format, and
archive those files

CSE 490c -- Craig Chambers 31




