Correctness proofs

n Ideally, we'd enter formal pre- and
post-conditions and invariants, and
statically prove that our program meets
them: formal verification

» Like typechecking
» Guarantees correct programs!!

n Completely impractical for real
programs

n [Why, do you think?|

CSE 490c -- Craig Chambers

Testing

n The realistic alternative is testing

n But testing can never guarantee
correctness, only that particular runs on
particular inputs seem to produce the
right answers

» So let's have lots of test cases!
" A test suite

CSE 490c -- Craig Chambers 24

Good test suites

n A test suite is good if it
» Exposes bugs quickly
n Exposes a//bugs
n This is hard!
n Need to get good coverage over all the things
a program might do

» All paths through the program's control flow
» But what about error paths?

» All "interesting" values of data structures
» What's interesting?

n Good coverage = slow

CSE 490c -- Craig Chambers 25

Unit tests

n A basic kind of test is a unit test
n Test a single unit of software
» E.g. a class or a method

n Suitable for a single programmer who's
developing the unit

n Manageable to strive for tests that
together get good coverage of the
interesting cases of the single unit

CSE 490c -- Craig Chambers 26

"Interesting cases"

n Try to exercise each non-"impossible"
path through each method

n Try to give crazy inputs

» Don't violate preconditions, but do
everything else

» Think about corner cases

» 0, negative numbers, empty arrays, empty
lists, circular references

CSE 490c -- Craig Chambers 27

Test cases vs. specifications

n A good test suite approximates a specification
» Each test has a legal input and the expected output
. input implies a (partial) precondition
. output implies a (partial) postcondition
» If formal specifications are too unwieldy, a good test
suite can be used instead (or in addition)

» Test suites are machine checkable, but not as complete as
real specifications

n Test-Driven Development: write test suite first!

» Another tenet of Extreme Programming

CSE 490c -- Craig Chambers 28




Running tests

n It can be very tedious to run tests by
hand

» Need to have a test harness that will
construct and pass in the right inputs

» Need to look at the output, and compare it
to the expected output

» Need to handle exceptions, too
n So, let's make tools!

CSE 490c -- Craig Chambers 29

Programming unit tests

» In Java, a simple strategy for unit testing is
to define self-testing classes
n Each class can definea static main
method that runs some set of unit tests of
the class
» The mai n method builds arguments, invokes
operations, checks results, handles exceptions
» To run, just invoke the class as if it were the main
application
» java MyDataStructure

n Still pretty tedious...

CSE 490c -- Craig Chambers 30

Making unit tests easier

n There exist tools to help in constructing
unit test harnesses
n E.g. JUnit, a unit test framework for
Java (http://junit.org)
» Constructs a report of successes & failures
» Provides some convenient helper functions

» "Test Infected: Programmers Love Writing
Tests"

CSE 490c -- Craig Chambers 31

Regression test suites

n Goal: accumulate a lot of good unit tests
» Run them frequently after changes
» Add testing to nake process

n A good regression test suite gives confidence
in development

» Confidence to try big clean-ups without
introducing uncaught bugs

» Confidence to commit changes to rest of team

CSE 490c -- Craig Chambers 32

Beyond unit tests

n Unit tests aren't enough!

n Need to test that the units work
together: integration testing

n [Why might errors crop up when testing
groups of units that weren't caught
when unit testing?]

CSE 490c -- Craig Chambers 33

Defensive programming

n The best programmers are defensive

» They design & implement code that is
unlikely to break

~ If there is a problem, the code breaks
quickly and clearly

n Some strategies:
» Minimize preconditions

~ Insert an assertion whenever they mentally
expect and rely on something being true

CSE 490c -- Craig Chambers 34




Programming for change

n Expect change:
» To software's design & requirements
» To interfaces
~ To data structures
n To people on the project
n Write code that minimizes reliance on things
that might change, & is flexible in face of
future changes
» Fewer bugs introduced when these things change

CSE 490c -- Craig Chambers 35

Other tools

n Programming language choice(s) influence
how likely programs are to be correct, how
easy programs are to debug

~» E.g. array bounds checking, static type checking

n Programming environment tools can help

mechanize much of testing
» JUnit is a simple example

» Some advanced static analysis tools can help to
find bugs

CSE 490c -- Craig Chambers 36




