
Name:

CSE 303, Winter 2006, Midterm Examination
8 February 2006

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 1:20.

• You can rip apart the pages, but please write your name on each page.

• There are 80 points total, distributed unevenly among 5 questions (all of which have multiple parts).

• When writing code, style matters, but don’t worry about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. (13 points)

(a) What does this bash command do? Give a simpler way (not using cat) to do the same thing.

cat foo > bar

(b) What does this bash command do? (Hint: It’s probably not what the user/script-writer intended.)

echo i > 3

Solution:

(a) It copies the contents of file foo to the file bar (both in the current directory).
Simpler is cp foo bar.

(b) It creates (or replaces) a file named 3 and has it hold the one character i.

2

Name:

2. (15 points) For each of the following, give a regular expression suitable for grep (or egrep) that
matches the lines described:

(a) Lines containing two or more a characters.

(b) Lines containing two a characters that have exactly 4 other characters between them.

(c) Lines that start with a dollar-sign.

(d) Lines containing any particular lower-case English letter three or more times (e.g., abbaa and
ababa would match but ababcc would not).

Solution:

(a) a.*a

(b) a....a

(c) ^\$

(d) ([a-z]).*\1.*\1

3

Name:

3. (12 points) Explain the behavior of this bash script. Do not explain how it works, just what a user
of the script would see. Note: It is not buggy; it does something semi-useful.

#!/bin/bash
ans=0
while [‘pwd‘ != "/"]
do
((ans = ans + 1))
cd ..

done
echo $ans

Solution:
It prints to standard out how many levels of subdirectories the current directory is below the topmost
directory. For example, if the current directory is /foo/bar/baz, it prints 3.

Note the current directory of the shell calling this script does not change.

4

Name:

4. (25 points) Consider this definition:

struct TwoPtrs {
int * p1;
int * p2;

};

(a) Write a function makeIt that takes two int arguments and returns a pointer to a new heap-
allocated struct TwoPtrs whose fields are pointers to new heap-allocated ints, one for each
argument.

(b) Write a function areSame that takes a struct TwoPtrs and returns:

• 0 if the fields point to locations holding different int values.
• 1 if the fields point to different locations holding the same int value.
• 2 if the fields point to the same location.

(c) Explain how a caller could use this function to produce an illegal (“may set the computer on fire”)
C program. Assume there are no dangling pointers before the function is called and the argument
is actually a struct TwoPtrs *.

void free_TwoPtrs_and_exit(struct TwoPtrs * x) {
free(x->p1);
free(x->p2);
free(x);
exit(1); /* exit immediately; does not return */

}

Solution:

(a) struct TwoPtrs * makeIt(int x, int y) {
struct TwoPtrs * ans = (struct TwoPtrs *)malloc(sizeof(struct TwoPtrs));
ans->p1 = (int*)malloc(sizeof(int));
ans->p2 = (int*)malloc(sizeof(int));
*(ans->p1) = x;
*(ans->p2) = y;
return ans;

}

(b) int areSame(struct TwoPtrs x) {
if(x.p1 == x.p2) return 2;
if(*(x.p1)== *(x.p2)) return 1;
return 0;

}

(c) If x->p1==x->p2 (i.e., they are aliases; pointers to the same int location), then the second-line
is a double-free.

5

Name:

5. (15 points)

(a) Consider this program

#ifdef DEBUG
#define DEBUG_PRINT(x) (printf("%d",(x)))
#else
#define DEBUG_PRINT(x) /* nothing */
#endif
int main(int argc, char** argv) {
int x=0;
DEBUG_PRINT(++x);
DEBUG_PRINT(x++);
return x;

}

i. If the program is compiled with DEBUG defined, what does main print and what does it return.
ii. If the program is compiled with DEBUG not defined, what does main print and what does it

return.

(b) Consider this program

void print_int(int x) { printf("%d",x); }
void ignore_int(int x) { }
void (*DEBUG_PRINT)(int);
int main(int argc, char** argv) {
#ifdef DEBUG

DEBUG_PRINT = &print_int;
#else
DEBUG_PRINT = &ignore_int;

#endif
int x=0;
DEBUG_PRINT(++x);
DEBUG_PRINT(x++);
return x;

}

i. If the program is compiled with DEBUG defined, what does main print and what does it return.
ii. If the program is compiled with DEBUG not defined, what does main print and what does it

return.

Solution:

(a) i. prints: 11 returns: 2
ii. prints: (nothing) returns: 0

(b) i. prints: 11 returns: 2
ii. prints: (nothing) returns: 2

6

