
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Autumn 2008

Lecture 25— C++ Overriding and Wrap-up;

Manual Memory-Management Idioms

CSE303 Autumn 2008, Lecture 25 1



'

&

$

%

Method overriding, part 1

If a derived class defines a method with the same name and argument

types as one defined in the base class (perhaps because of an

ancestor), it overrides (i.e., replaces) rather than extends.

If you want to use the base-class code, you specify the base class when

making a method call.

• Like super in Java (no such keyword in C++ since there may be

multiple inheritance)

Warning: the title of this slide is part 1.

CSE303 Autumn 2008, Lecture 25 2



'

&

$

%

Casting and subtyping

An object of a derived class cannot be cast to an object of a base class.

• For the same reason a struct T1 { int x, y, z; } cannot be

cast to type struct T2 { int x, y; } (different size)

A pointer to an object of a derived class can be cast to a pointer to an

object of a base class.

• For the same reason a struct T1 * can be cast to type

struct T2 * (point to a prefix of the memory)

• (Story not so simple with multiple inheritance)

After such an upcast, field-access works fine (prefix), but what do

method calls mean in the presence of overriding...

CSE303 Autumn 2008, Lecture 25 3



'

&

$

%

An important example

class A {

public:

void m1() { cout << "a1"; }

virtual void m2() { cout << "a2"; }

};

class B : public A {

void m1() { cout << "b1"; }

void m2() { cout << "b2"; }

};

void f() {

A* x = new B();

x->m1();

x->m2();

}

CSE303 Autumn 2008, Lecture 25 4



'

&

$

%

In words

• A non-virtual method-call is resolved using the (compile-time)

type of the receiver expression.

• A virtual method-call is resolved using the (run-time) class of the

receiver object (what the expression evaluates to).

– Like in Java

– Called “dynamic dispatch”

• A method-call is virtual if the method called is marked virtual or

overrides a virtual method.

– So “one virtual” somewhere up the base-class chain is enough,

but it’s probably better style to repeat it.

CSE303 Autumn 2008, Lecture 25 5



'

&

$

%

More on two method-call rules

For software-engineering, virtual and non-virtual each have advantages

(see CSE341):

• Non-virtual – can look at the code to know what you’re calling

• Virtual – easier to extend code already written

The implementations are the same and different:

• Same: Methods just become functions with one extra argument

this (pointer to receiver).

• Different:

– Non-virtual: linker can plug in code pointer

– Virtual: At run-time, look up code pointer via “secret field” in

the object

CSE303 Autumn 2008, Lecture 25 6



'

&

$

%

Destructors revisited

class B : public A { ... }

...

B * b = new B();

A * a = b;

delete a;

Will B::~B() get called (before A::~A())?

Only if A::~A() was declared virtual.

• Rule of thumb: Declare destructors virtual; usually what you want.

CSE303 Autumn 2008, Lecture 25 7



'

&

$

%

Downcasts

Old news:

• C pointer-casts: unchecked; better know what you are doing

• Java: checked; may raise ClassCastException

(check “secret field”)

New news:

• C++ has “all the above” (several different kinds of casts)

• If you use single-inheritance and know what you are doing, the

C-style casts (same pointer, assume more about what is pointed

to) should work fine for downcasts.

• Worth learning about the differences on your own

CSE303 Autumn 2008, Lecture 25 8



'

&

$

%

Pure virtual methods

A C++ “pure virtual” method is like a Java “abstract” method.

• Some subclass must override because there is no definition in base

class.

• Makes sense with dynamic dispatch.

• Unlike Java, no need/way to mark the class specially.

• Funny syntax in base class; override as usual:

class C {

virtual t0 m(t1,t2,...,tn) = 0;

...

};

• Side-comment: with multiple inheritance and pure-virtual

methods, no need for a separate notion of Java-style interfaces.

CSE303 Autumn 2008, Lecture 25 9



'

&

$

%

C++ summary

• Lots of new syntax and gotchas, but just a few new concepts:

– Objects vs. pointers to objects

– Destructors

– virtual vs. non-virtual

– pass-by-reference

• Plus all the stuff we didn’t get to, especially templates,

exceptions, and operator overloading.

• Maybe later: why objects are better than code-pointers / coding

up object-like idioms in C

CSE303 Autumn 2008, Lecture 25 10



'

&

$

%

Memory-management idioms

Review: Java and C memory-management rules

Idioms for memory-management:

• Garbage collection

• Unique pointers

• Reference Counting (later)

• Arenas (a.k.a. regions) (later)

Note: Same “problems” with file-handles, network-connections,

Java-style iterators, ...

Note: Idioms are not tools, rules, or language-features, rather

“common time-tested approaches”

• Those are important to learn too.

CSE303 Autumn 2008, Lecture 25 11



'

&

$

%

Java rules

• Space for local variables lasts until end of method-call, but no

problem because cannot get pointer into stack

• All “objects” are in the heap; they conceptually live forever.

– Really get reclaimed when they are unreachable (from a stack

variables or global variable).

– Static fields are global variables.

Consequences:

• You rarely think about memory-management.

• You can run out of memory without needing to (e.g., long dead

list in a global), but you still get a safe exception.

• No dangling-pointer dereferences!

• Extra behind-the-scenes space and time for doing the collection.

CSE303 Autumn 2008, Lecture 25 12



'

&

$

%

C rules

• Space for local variables lasts until end of function-call, may lead

to dangling pointers into the stack.

• Objects into the heap live until free(p) is called, where p points

to the beginning of the object.

• Therefore, unreachable objects can never be reclaimed.

• malloc returns NULL if it cannot find space.

• If you do the following, HYCSBWK:

1. Call free with a stack pointer or middle pointer.

2. Call free twice with the same pointer.

3. Dereference a pointer to an object that has been freed.

• Usually 1–2 screw up the malloc/free library and 3 screws up an

application when the space is being used for another object.

CSE303 Autumn 2008, Lecture 25 13



'

&

$

%

Garbage Collection for C

Yes, there are garbage collectors for C (and C++)!

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

• redefines free to do nothing

• unlike a Java GC, conservatively thinks an int might be a pointer.

Questions to ask yourself in any application:

• Why do I want manual memory management?

• Why do I want C?

Good (and rare!) answers against GC: Tight control over performance;

even short pauses unacceptable; need to free reachable data.

Good (and rare!) answers for C: Need tight control over data

representation and/or pointers into the stack.

Other answer for C: need easy interoperability with lots of existing code

CSE303 Autumn 2008, Lecture 25 14



'

&

$

%

Why is it hard?

This is not really the hard part:

free(p);

...

p->x = 37; // dangling-pointer dereference

These are:

p = q; // if p was last reference and q!=p, leak!

lst1 = append(lst1,lst2);

free_list(lst2); // user function, assume it

// frees all elements of list

length(lst1); // dangling-pointer dereference

// if append does not copy!

There are an infinite number of safe idioms, but only a few are known

to be simple enough to get right in large systems...

CSE303 Autumn 2008, Lecture 25 15



'

&

$

%

Idiom 1: Unique Pointers

Ensure there is exactly one pointer to an object. Then you can call

free on the pointer whenever, and set the pointer’s location to NULL

to be “extra careful”.

Furthermore, you must free pointers before losing references to them.

Hard parts:

1. May make no sense for the data-structure/algorithm.

2. May lead to extra space because sharing is not allowed.

3. Easy to lose references (e.g., p=q;).

4. Easy to duplicate references (e.g., p=q;) (must follow with

q=NULL;).

5. A pain to return unfreed function arguments.

CSE303 Autumn 2008, Lecture 25 16



'

&

$

%

Relaxing Uniqueness

This does not preserve uniqueness:

void g(int *p1, int*p2) { ... }

void f(int *p1, int*p2) {

if(...)

g(p1,p1);

else

g(p1,p2);

...

free(p1);

free(p2);

}

Wrong if g frees an argument or stores an alias somewhere else.

Also notice true-branch creates aliases just in the callee.

CSE303 Autumn 2008, Lecture 25 17



'

&

$

%

Relaxing Uniqueness

Instead, have some “unconsumed” pointers:

• Callee won’t free them

• They will be unique again when function exits

More often what you want, but changes the contract:

• Callee must not free

• Callee must not store the pointer anywhere else (in a global, in a

field of an object pointed to by another pointer, etc.)

CSE303 Autumn 2008, Lecture 25 18


