
Name:

CSE 303, Winter 2006, Final Examination
16 March 2006

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• You can rip apart the pages, but please write your name on each page.

• There are 100 points total, distributed unevenly among 7 questions (which have multiple parts).

• When writing code, style matters, but don’t worry about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. (20 points) This problem has 4 parts.

Suppose you have a large C program named app that includes a function f. You want to know if
running app on the input 17 causes f to be called. For each question below, be very specific about
how you would modify files and/or run commands and programs, and in what order.

(a) Describe how to solve this problem by adding code to a C file.

(b) Describe how to solve this problem without changing code but using the debugger gdb.

(c) Describe how to solve this problem without changing code but using the profile gprof.

Now suppose app also has a function g and you want to know if running app 17 causes f to be called
after g is called but before g returns. (That is, does g ever cause a sequence of calls that includes f?)
You may assume g is called a small number of times.

(d) Describe how to extend the first two approaches above to solve this modified problem.

2

Name:

2. (20 points) Consider these two C files:

a.c: b.c:

void f(int p); void f(char * p) {
*p = ’x’;

int main(int argc, char**argv) { }
f(17);
return 0;

}

(a) Why is the program made from a.c and b.c incorrect? What would you expect running it to do?

(b) Will gcc -Wall -c a.c or gcc -Wall -c b.c give an error or produce a.o and b.o?

(c) Will gcc -Wall a.c b.c give an error or produce a.out?

(d) How would you use a standard C coding practice (using an extra file) to avoid the problem above?
Write this extra file and modified versions of a.c and b.c to explain.

3

Name:

3. (15 points) Write a Makefile for this scenario:

• An application myprog is written in C, with all the code in myprog.c.

• You wrote two test-inputs, in files input1 and input2.

• You want to run myprog with profiling on each test-input and then use gprof, saving the result
to file prof1 (for input input1) or prof2 (for input prof2).

• You have a bash script compare that takes as arguments two files created by gprof and produces
an interesting summary. You want a phony run target that runs compare on prof1 and prof2.

Your Makefile should re-compile or re-run programs only as necessary (except the run target should
always execute compare), but it should never use out-dated programs.

Hints: You should have 4 targets. Some will need multiple commands. Some will need multiple sources.

4

Name:

4. (10 points) Suppose you are using cvs for a group project. You decide to move some of the code in
foo.c to a new file bar.c. You update the Makefile appropriately.

(a) What cvs command should you use before your next commit?

(b) If you forget to do your answer to part (a), who will discover your forgetfulness and when?

5

Name:

5. (8 points)

Suppose you want to make a library blah (also known as an archive, i.e., a libblah.a file) containing
functions f1, f2, ..., fn that may call each other but do not call any other functions.

(a) If you want to make sure library users never have to write -lblah more than once when linking,
how should you organize your n functions into files? Explain.

(b) If you want to make sure library users never have any more code in their executable than absolutely
necessary, how should you organize your n functions into files? Explain.

6

Name:

6. (12 points) Here is a C program for testing a function f to see if it always returns 0:

int f(int x, int y);
int main(int argc, char** argv) {
if(f(0,0)!=0)
return 1; // failure

if(f(1,1)!=0)
return 1; // failure

return 0; // success
}

Give an example of a function f such that:

• The test above achieves full statement and branch coverage.

• The function does not always return 0.

Explain your answer.

7

Name:

7. (15 points) This problem has 3 parts.

Assume we are using reference-counting to manage the memory pointed to by p and q. Recall that
with reference-counting, when we assign q to p we should write:

decr_count(p); // line 1
p = q;
incr_count(p); // line 3

(a) What error could occur (later) if you forget line 1? Explain.

(b) What error could occur (later) if you forget line 3? Explain.

Suppose the definition of incr_count looks like this:

void incr_count(struct Foo * x) {
int c = x->count;
x->count = c + 1;

}

(c) If two threads call incr_count with the same pointer at the same time, what could go wrong?
What would happen to the count and what error could occur later as a result?

8

