
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Spring 2008

Lecture 24— Introduction to C++

CSE303 Spring 2008, Lecture 24 1

'

&

$

%

C++

C++ is an enormous language:

• All of C

• Classes and objects (kind of like Java, some crucial differences)

• Many more little conveniences (I/O, new/delete, function

overloading, pass-by-reference, bigger standard library)

• Namespaces (kind of like Java packages)

• Stuff we won’t do: const, different kinds of casts, exceptions,

templates, multiple inheritance, ...

We will focus on a couple themes rather than just a “big bag of new

features to memorize”...

CSE303 Spring 2008, Lecture 24 2

'

&

$

%

Our focus

OOP in a C-like language may help you understand C and Java better?

• We can put objects on the stack or the heap; an object is not a

pointer to an object

• Still have to manage memory manually

• Still lots of ways to HCBWKMSCOD (hopefully crash, but who

knows – might silently corrupt other data)

• Still distinguish header files from implementation files

• Allocation and initialization still separate concepts, but easier to

“construct” and “destruct”

• Programmer has more control on how method-calls work (different

defaults from Java)

CSE303 Spring 2008, Lecture 24 3

'

&

$

%

Hello World

#include <iostream>

int main() {

// Use standard output stream cout

// and operator << to send "Hello World"

// and an end line to stdout

std::cout << "Hello World" << std::endl;

return 0;

}

Differences from C: “new-style” headers (no .h), namespace access

(::), I/O via stream operators, ...

Differences from Java: not everything is in a class, any code can go in

any file, ...

CSE303 Spring 2008, Lecture 24 4

'

&

$

%

Compiling

Need a different compiler than for C; use g++ on attu. Example:

g++ -Wall -o hello hello.cc

The .cc extension is a convention (just like .c for C), but less

universal (also see .cpp, .cxx, .C).

Uses the C preprocessor (no change there).

Now: A few “niceties” before our real focus (classes and objects).

CSE303 Spring 2008, Lecture 24 5

'

&

$

%

I/O

Operator << takes a “ostream” and (various things) and outputs it;

returns the stream, which is why

std::cout << 3 << "hi" << f(x) << ’\n’; works

• Easier and safer than printf

Operator >> takes “istream” and (various things) and inputs into it.

• Easier and safer than scanf. Do not use pointers; e.g.,

int x; std::cin >> x;

Can “think of” >> and << as keywords, but they are not:

• Operator overloading redefines them for different pairs of types.

– In C they mean “left-shift” and “right-shift” (of bits);

undefined for non-numeric types.

• Lack of address-of for input done with call-by-reference (later).

CSE303 Spring 2008, Lecture 24 6

'

&

$

%

Namespaces

In C, all non-static functions in the program need different names

• Even operating systems with tens of millions of lines.

Namespaces (cf. Java packages) let you group top-level names:

• namespace myspace { ... definitions ... }

• Of course, then different namespaces can have the same function

names and they are totally different functions.

• Can nest them

• Can reuse the same namespace in multiple places

– Pariticularly common: in the .h and the .cc

For example, the whole C++ standard library is in namespace std.

To use a function/variable/etc. in another namespace, do

thespace::someFun() (not . like in Java)

CSE303 Spring 2008, Lecture 24 7

'

&

$

%

Using

To avoid having to write namespaces and :: constantly, use a using

declaration

Example:

#include <iostream>

using namespace std;

int main() {

cout << "Hello World" << endl;

return 0;

}

CSE303 Spring 2008, Lecture 24 8

'

&

$

%

Onto OOP
Like Java:

• Fields vs. methods, static vs. instance, constructors

• Method overloading (functions, operators, and constructors too)

Not quite like Java:

• access-modifiers (e.g., private) syntax and default

• declaration separate from implementation (like C)

• funny constructor syntax, default parameters (e.g., ... = 0)

Nothing like Java:

• Objects vs. pointers to objects

• Destructors and copy-constructors

• virtual vs. non-virtual (to be discussed)

CSE303 Spring 2008, Lecture 24 9

'

&

$

%

Stack vs. heap

Java: cannot stack-allocate an object (only a pointer to one).

C: can stack-allocate a struct, then initialize it.

C++: stack-allocate and call a constructor (where this is the object’s

address, as always)

• Property p1(10000);

Java: new Property(...) calls constructor, returns heap-allocated

pointer.

C: Use malloc and then initialized, must free exactly once later.

C++: Like Java, but can also do new int(42). Like C must

deallocate, but must use delete instead of free.

CSE303 Spring 2008, Lecture 24 10

'

&

$

%

Destructors

An object’s destructor is called just before the space for it is reclaimed.

A common use: Reclaim space for heap-allocated things pointed to

(first calling their destructors).

• But not if there are other pointers to it (aliases)?!

Meaning of delete x: call the destructor of pointed-to heap object,

then reclaim space.

Destructors also get called for stack-objects (when they leave scope).

Advice: Always make destructors virtual (learn why soon)

CSE303 Spring 2008, Lecture 24 11

'

&

$

%

Arrays

Create a heap-allocated array of objects: new A[10];

• Calls default (zero-argument) constructor for each element.

• Convenient if there’s a good default initialization.

Create a heap-allocated array of pointers to objects: new A*[10]

• More like Java (but not initialized?)

• As in C, new A() and new A[10] have type A*.

• new A* and new A*[10] both have type A**.

• Unlike C, to delete a non-array, you must write delete e

• Unlike C, to delete an array, you must write delete [] e

Else HYCSBWK – the deleter must know somehow what is an array.

CSE303 Spring 2008, Lecture 24 12

'

&

$

%

Digression: Call-by-reference

In C, we know function arguments are copies

• But copying a pointer means you still point to the same

(uncopied) thing

Same in C++, but a “reference parameter” (the & character after it)

is different.

Callee writes: void f(int& x) { x = x + 1; }

Caller writes: f(y)

But it’s as though the caller wrote f(&y) and everywhere the callee

said x they really said *x.

So that little & has a big meaning.

CSE303 Spring 2008, Lecture 24 13

'

&

$

%

Copy Constructors

In C, we know x=y or f(y) copies y (if a struct, then member-wise

copy).

Same in C++, unless a copy-constructor is defined, then do whatever

it says.

A copy-constructor by definition takes a reference parameter (else we’d

need to copy, but that’s what we’re defining) of the same type.

Let’s not talk about the const.

CSE303 Spring 2008, Lecture 24 14

'

&

$

%

Now more OOP: Subclassing

In many ways, OOP is “all about” subclasses overriding methods.

• Often not what you want, but what makes OOP fundamentally

different from, say, functional programming (CSE341)

C++ gives you lots more options than Java with different defaults, so

it’s easy to scream “compiler bug” when you mean “I’m using the

wrong feature”...

Basic subclassing:

• class D : public C { ... }

• This is public inheritance; C++ has other kinds too (won’t cover)

– Differences affect visibility and issues when you have multiple

superclasses (won’t cover)

– So do not forget the public keyword

CSE303 Spring 2008, Lecture 24 15

'

&

$

%

More on subclassing

• Not all classes have superclasses (unlike Java with Object)

• Terminology

– Java (and others): “superclass” and “subclass”

– C++ (and others): “base class” and “derived class”

• Our example code: House derives from Land which derives from

Property

• As in Java, can add fields/methods/constructors, and override

methods.

CSE303 Spring 2008, Lecture 24 16

'

&

$

%

Construction and destruction

• Constructor of base class gets called before constructor of derived

class

– Default (zero-arg) constructor unless you specify a different

one after the : in the constructor.

• Destructor of base class gets called after destructor of derived

class

So constructors/destructors really extend rather than override, since

that is typically what you want.

• Java is the same

CSE303 Spring 2008, Lecture 24 17

