
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Spring 2008

Lecture 7— Introduction to C: The C-Level of Abstraction

CSE303 Spring 2008, Lecture 7 1

'

&

$

%

Welcome to C

Compared to Java, in rough order of importance

• Lower level (less for compiler to do)

• Unsafe (wrong programs might do anything)

• Not “object-oriented”

• “Standard library” is much smaller.

• Many similar control constructs (loops, ifs, ...)

• Many syntactic similarities (operators, types, ...)

A different world-view and much more to keep track of; Java-like

thinking can get you in trouble.

CSE303 Spring 2008, Lecture 7 2

'

&

$

%

Our plan

A semi-nontraditional way to learn C:

• Learn how C programs actually run on machines like attu

– Not promised by C’s definition

– You do not need to “reason in terms of the implementation”

when you follow the rules.

– But it does help to know this model

∗ To remember why C has the rules it does

∗ To debug incorrect programs

• Learn some C basics (including “Hello World!”)

• Learn what C is (still) used for

• Learn more about the language and good idioms

• Later: A little C++

CSE303 Spring 2008, Lecture 7 3

'

&

$

%

Some References

There’s a lot on the web, but here are some primary sources.

• C: A Reference Manual, Harbison & Steele (currently 5th ed.).

Probably the best current reference on C and its libraries, updated

with information about recent versions of the C standard.

• The C Programming Language, Kernighan & Ritchie. “K&R” is a

classic, one that every programmer has on their shelves (or

should). A bit dated now, but the primary source, very much

worth reading.

• Essential C, Stanford CS lib,

http://cslibrary.stanford.edu/101/EssentialC.pdf.

Good short introduction to the language by some friends at

Stanford.

CSE303 Spring 2008, Lecture 7 4

'

&

$

%

Address space

Simple model of a running process (provided by the O/S):

• There is one address space (an array of bytes)

– Most common size today for a machine like attu is 232

– We will “assume 32” for now, though you often shouldn’t

– That is more RAM than you have (O/S maintains illusion; may

lead to slowness)

– “Subscripting” this array takes 32 bits

– Something’s address is its position in this array.

– Trying to read a not-used part of the array may cause a

“segmentation fault” (immediate crash).

• All data and code for the process are in this address space.

– Code and data are bits; program “remembers” what is where.

– O/S also lets you read/write files, stdin, stdout, stderr.

CSE303 Spring 2008, Lecture 7 5

'

&

$

%

Address-space layout

The following is definitely different on different systems, but it’s one

way to understand how C is implemented:

code globals heap→ ... ← stack

So in one array of 8-bit bytes we have:

• Code instructions (typically immutable)

• Space for global variables (mutable and immutable) (like Java’s

static fields)

• A heap for other data (like objects returned by Java’s new)

• Unused portions; access causes “seg-fault”

• A call-stack holding local variables and code addresses

Note: Assuming an int occupies 4 bytes

CSE303 Spring 2008, Lecture 7 6

'

&

$

%

The stack

The call-stack (or just stack) has one “part” or “frame” (compiler

folks call it an activation record) for each function (cf. Java method)

call that has not yet returned.

It holds:

• Room for local variables

• The return address (index into code for what to execute after the

function is done)

CSE303 Spring 2008, Lecture 7 7

'

&

$

%

What could go wrong?

Remember, the programmer has to keep the bits straight even though

C deals in terms of variables, functions, data structures, etc. (not bits).

• If arr is an array of 10 elements, arr[30] accesses some other

thing.

• Writing 8675309 where a return address should be makes a

function start executing stuff that may not be code.

• ...

Correct C programs can’t do these things, but nobody is perfect.

On the plus side, there is no “unnecessary overhead” like keeping array

lengths around and checking them!

Okay, time to see C...

CSE303 Spring 2008, Lecture 7 8

'

&

$

%

Hello, World!

#include<stdio.h>

int main(int argc, char**argv) {

fputs("Hello, World!\n",stdout);
return 0;

}

• Compiling: gcc -o hi hello.c (usually add -Wall -g)

• Running: ./hi

Intuitively: main gets called with the command-line args and the

program exits when it returns.

But there is a lot going on in terms of what the language constructs

mean, what the compiler does, and what happens when the program

runs.

We will focus mostly on the language.

CSE303 Spring 2008, Lecture 7 9

'

&

$

%

Quick Hello Explanation

#include<stdio.h>

int main(int argc, char**argv) {

fputs("Hello, World!\n",stdout);
return 0;

}
• #include finds the file stdio.h (from where?) and includes its

entire contents. (stdio.h describes fputs and stdout.)

• A function definition is much like a Java method (return type,

name, arguments with types, braces, body); it is not part of a

class and there are no built-in objects or this.

• An int is like in Java, though its size depends on the compiler (it

is 32 bits on attu).

• main is a special function name; every full program has one.

• char** is a long story...

CSE303 Spring 2008, Lecture 7 10

'

&

$

%

Pointers

Think address, i.e., an index into the address-space array.

If argv is a pointer, then *argv returns the pointed-to value.

So does argv[0].

And if argv points to an array of 2 values, then argv[1] returns the

second one (and so does *(argv+1) but the + here is funny).

People like to say “arrays and pointers are the same thing in C”. this

is sloppy talking, but people say it anyway.

Type syntax: t* describes either

• NULL (seg-fault if you dereference it)

• A pointer holding the address of some number of values of type t.

How many? You have to know somehow; no length primitive.

CSE303 Spring 2008, Lecture 7 11

'

&

$

%

Pointers, continued

So reading right to left: argv (of type char**) holds a pointer to

(one or more) pointer(s) to (one or more) char(s).

Fact #1 about main: argv holds a pointer to j pointers to (one or

more) char(s) where argc holds j.

Common idiom: array lengths as other arguments.

Fact #2 about main: For 0 ≤ i ≤ j where argc holds j, argv[i] is

an array of char(s) with last element equal to the character ’\0’

(which is not ’0’).

Very common idiom: pointers to char arrays ending with ’\0’ are

called strings. The standard library and language often use this idiom.

[Let’s draw a picture of “memory” when hi runs.]

CSE303 Spring 2008, Lecture 7 12

'

&

$

%

Rest of the story

#include<stdio.h>

int main(int argc, char**argv) {

fputs("Hello, World!\n",stdout);
return 0;

}

• fputs is a function taking a string (a char*) and a FILE* (where

FILE is a type defined in stdio.h).

• "Hello, World!\n" evaluates to a pointer to a global,

immutable array of 15 characters (including a trailing ’\0’, \n is

one character).

• stdout is a global variables of type FILE* defined in stdio.h.

How this gets hooked up to the screen (or somewhere else) is the

library’s (nontrivial) problem.

CSE303 Spring 2008, Lecture 7 13

'

&

$

%

Variations of Hello World

Things we can try to understand, time permitting:

• print command-line arguments

• use printf

• change exit values

• use local variables to hold strings

• update string elements (won’t work for constant strings)

• update string elements (including buffer overflow and overwriting

the ’\0’ and putting a ’\0’ “early”.

CSE303 Spring 2008, Lecture 7 14

