CSE 303
Lecture 18

Bitwise operations

reading: Programming in C Ch. 12

slides created by Marty Stepp
http://www.cs.washington.edu/303/

A puzzle...

e A king wishes to throw a grand party tomorrow in his castle. He
has purchased 1000 bottles of wine to serve to his many guests.

N

e However, a thief has been caught breaking into the wine cellar! He
poisoned a single bottle. The poison is lethal at even the smallest
dose; it causes death within approximately 12-15 hours.

= The king wants to find out which bottle has been poisoned and throw
it out so that his guests will not be harmed.

e The king has over 1000 servants to help him, and a few dozen
prisoners in his dungeon, but he does not want to risk servant lives
if possible. The prisoners are vermin and may be sacrificed.

= How should the king find the poisoned bottle?

\ Hint: First solve it with 4 bottles of wine and 2 prisoners. J

2

The answer

e Number each bottle from 1 to 1000.

= Convert the bottle numbers to ten-digit binary numbers, from 1
(00000001) to 1000 (1111101000).

e Consider each of the 10 prisoners to represent one of the ten bits.

e Each prisoner will drink from multiple bottles.

= Prisoner i will drink every bottle for which bit i is 1.

e The pattern of dead prisoners tells you which bottle was poisoned.

= |f prisoners 1, 3, and 7 die, bottle # (512 + 128 + 8) = 648 was bad.

e moral : Tightly packed data can be a good thing to avoid waste.

_

/.

Motivation

e C was developed with systems programming in mind
= |ean, mean, fast, powerful, unsafe
= pointers provide direct access to memory

e Cis often used in resource-constrained situations
= devices without much memory
= devices with slow processors
= devices with slow network connections

e it is sometimes necessary to manipulate individual bits of data
= "twiddle with bits"
= "bit packing"

_ _/

Terms

e bit: a single binary digit, either O or 1
e nibble: 4 bits
e byte: 8 bits (also sometimes called an "octet")

e word: size of an integer on a given machine (often 32 bits)
e hword: 16 bits ("half word")
e dword: two words long ("double word", "long word")

= How many unique values can be stored in a bit? A nibble? A byte?
= How many unique values can be stored using N bits?

_

Bases, number systems

e decimal (base-10) int x1 = 42;
= most natural to humans

e binary (base-2)
= how the computer stores data

e hexadecimal (base-16) int x2 = Ox2a;
"= memory addresses
= each digit maps to 4 bits; concise

e octal (base-8) int x3 = 052;

= chmod permissions
= each digit maps directly to 3 bits; no special number symbols used

_ _/

Binary representations

e recall: ints are stored as 32-bit (4-byte) integers
int x = 42;

00000000 | VOVYVVVO | VOV | V0101010

int y =1 + 128 + 256 + 4096 + 32768 + 131072;

00000000 | VYVVVV10 | 10010001 | 10000001

e the maximum positive int value that can be stored is 231 -1
int z = 2147483647;
01111111 | 11111111 | 11111111 | 11111111

Negative binary numbers

e |[eft most bit is the "sign bit"; O for positive, 1 for negative
= all 1s represents -1 ; subsequent negatives grow "downward"

int x = -1;
11111111 | 11121211 | 11111111 | 11111111
inty = -2, z = -3;
11111111 | 11111111 | 11111111 | 11111110
11111111 | 11111111 | 11111111 | 11111101

= asingle 1 followed by all zeros represents -(23? - 1)

int z =

-2147483648;

// largest negative value

10000000

00000000

00000000

00000000

Negating in binary

e negating a binary number
= "ones complement" : flip the bits (wrong)
= "twos complement" : flip the bits, add 1 (preferred)

e converting a negative number from decimal to binary and back
= add 1, then convert abs. value to binary, then flip bits
= binary to decimal: flip bits, convert to decimal, subtract 1

int x = -27; // -27 + 1 = -26
// 26 , = 11010
// flip = ee1e1l

11111711771 | 171171711171 | 11111111 | 11100101

Bitwise operators

expression description
a&b AND ; all bits that are setto 1 in bothaand b
al| b OR; all bits that are setto 1 ina orin b or both
a”™b XOR ; all bits that are setto 1 in @ or in b but not in both
~a NOT ; the "ones complement" of the bits of a (all bits flipped)
a << n LEFT SHIFT ; moves all digits to the left by n places;

same as multiplying a * 2"

a>>n RIGHT SHIFT ; moves all digits to the right by n places;

same as dividing a /2"

= |eft shift pads remaining right digits with O

= right shift pads w/ 0 or value of a's leftmost (most significant) bit

" most operators can be used with =, such as &=, ~=, >>=
= what is the difference between & and &&? ~and ! ?

10

_

AND, OR, XOR, NOT

bitl | bit2 | bitl &bit2 | bitl | bit2 | bitl ~ bit2 | bitl & ~bit2
%) 0 0 0 0 0
%) 1 0 1 1 0
1 0 0 1 1 1
1 1 1 1 0 0
64 32 16 8 4 2 1
25 © 6 1 1 o0 o0 1
77 1 6 06 1 1 0 1
e Whatis 25 & 77 °? © 06 0 1 0 0 1
e Whatis 25 | 77 ? 1 © 1 1 1 o0 1
e Whatis 25 ~ 77 ? 1 06 1 6 1 © 0
e Whatis 25 & ~77°7 © 06 1 0 © 0 o0

11

Bit shifting

e Shifting left is like multiplying by powers of 2:

int x = 42; // 101010

inty =x<<1; // 1010100 (84 = 42 * 2)
int z = x << 3; // 101010000 (336 = 42 * 8)
int w = x << 31; // 0 (why?)

e Shifting right is like dividing by powers of 2:

int x = 42; // 101010
inty = x> 1; // 10101 (21)
X = -42; // 111111...010110

int z = x > 1; // 1111111...01011 (-21)

e often faster than multiplication, but don't worry about that

\ = "Premature optimization is the root of all evil." -- Donald Knuth

12

Exercises

e Write functions to do the following tasks:
= print an integer in binary

rotate bits by n places

get/set a given bit from a given integer

get/set a given range of bits from a given integer

invert a given bit(s) of a given integer

Should these be functions or preprocessor macros?

13

Recall: integer types

e integer types: char (1B), short (2B), int (4B), long (8B)

e modifiers: short, long, signed, unsigned (non-negative)
type bytes range of values printf
char 1 0 to 255 %C
octal %0
hex %X
short int 2 -32,768 to 32,767 %»hi
unsigned short int 2 0 to 65,535 %hu
int 4 -2,147,483,648 to 2,147,483,647 %d, %1
unsigned int 4 0to 4,294,967,295 U
long long int 8 -9e18t09e18-1 %111

14

Unsigned integers

unsigned int x = 42u;
changes interpretation of meaning of bits; no negatives allowed
maximum is twice as high (leftmost bit not used to represent sign)

right-shift behavior not same (pads w/ 0 instead of sign bit)

seen in some libraries (size_t, malloc, etc.)
often used with bit-packing because we don't care about sign

why not use unsigned more often?

really, it's all just bits in the end...

15

Bit packing

e bit packing: storing multiple values in the same word of memory
= example: storing a student's id, year, and exam score in a single int

e boolean (bool) values could really be just 1 bit (0 or 1)
= "bit flags"
= but abool is actually a 1-byte integer value (Why?)

e integers known to be small could use fewer than 32 bits
= example: student IDs, 7 digits (how many bits?)
= example: homework/exam scores, up to 100 (how many bits?)

16

Bit flags

#define REGISTERED ©0x1

#define FULLTIME ©Ox2

#tdefine PAIDTUITION ©ox4
#tdefine ACADEMICPROBATION ©x8
##tdefine HONORROLL ©x10 // 16
#tdefine DEANSLIST ©0x20 // 32

int studentl = ©;

// set student to be registered and on honor roll
studentl = studentl | REGISTERED | HONORROLL;

// make sure student isn't on probation
studentl = studentl & ~ACADEMICPROBATION;

_

17

Bit fields

typedef struct name
unsigned name : bitsWide;

unsigned name : bitsWide;
} name;

= declares a field that occupies exactly bitsWide bits

= can be declared only inside a struct

= exact ordering of bits is compiler-dependent

= can't make pointers to them; not directly addressable

18

Binary data 1/0

function description

size t fwrite(void* ptr, size t size, writes given number of elements

size t count, FILE* file) from given array/buffer to file
(size_t means unsigned int)

size t fread(void* ptr, size t size, reads given number of elements
size t count, FILE* file) |togiven array/buffer from file

// writing binary data to a file

int values[5] = {10, 20, 30, 40, 50};
FILE* f = fopen("saved.dat", "w");
fwrite(values, sizeof(int), 5, f);

// reading binary data from a file
int values[5];

FILE* f = fopen("saved.dat", "r");
fread(values, sizeof(int), 5, f);

19

