
1

CSE 303
Lecture 18

Bitwise operations

reading: Programming in C Ch. 12

slides created by Marty Stepp

http://www.cs.washington.edu/303/



2

A puzzle...
• A king wishes to throw a grand party tomorrow in his castle.  He 

has purchased 1000 bottles of wine to serve to his many guests.

• However, a thief has been caught breaking into the wine cellar! He 
poisoned a single bottle.  The poison is lethal at even the smallest 
dose; it causes death within approximately 12-15 hours.

The king wants to find out which bottle has been poisoned and throw 
it out so that his guests will not be harmed.

• The king has over 1000 servants to help him, and a few dozen 
prisoners in his dungeon, but he does not want to risk servant lives 
if possible.  The prisoners are vermin and may be sacrificed.

How should the king find the poisoned bottle?

Hint: First solve it with 4 bottles of wine and 2 prisoners.



3

The answer
• Number each bottle from 1 to 1000.

Convert the bottle numbers to ten-digit binary numbers, from 1 
(00000001) to 1000 (1111101000).

• Consider each of the 10 prisoners to represent one of the ten bits.

• Each prisoner will drink from multiple bottles.
Prisoner i will drink every bottle for which bit i is 1.

• The pattern of dead prisoners tells you which bottle was poisoned.
If prisoners 1, 3, and 7 die,  bottle # (512 + 128 + 8) = 648 was bad.

• moral : Tightly packed data can be a good thing to avoid waste.



4

Motivation
• C was developed with systems programming in mind

lean, mean, fast, powerful, unsafe

pointers provide direct access to memory

• C is often used in resource-constrained situations
devices without much memory

devices with slow processors

devices with slow network connections

• it is sometimes necessary to manipulate individual bits of data
"twiddle with bits"

"bit packing"



5

Terms
• bit: a single binary digit, either 0 or 1

• nibble: 4 bits

• byte: 8 bits  (also sometimes called an "octet")

• word: size of an integer on a given machine  (often 32 bits)

• hword: 16 bits ("half word")

• dword: two words long  ("double word", "long word")

How many unique values can be stored in a bit?  A nibble?  A byte?

How many unique values can be stored using N bits?



6

Bases, number systems
• decimal (base-10) int x1 = 42;

most natural to humans

• binary (base-2)
how the computer stores data

• hexadecimal (base-16) int x2 = 0x2a;
memory addresses

each digit maps to 4 bits;  concise

• octal (base-8) int x3 = 052;
chmod permissions

each digit maps directly to 3 bits;  no special number symbols used



7

Binary representations
• recall: ints are stored as 32-bit (4-byte) integers

int x = 42;

int y = 1 + 128 + 256 + 4096 + 32768 + 131072;

• the maximum positive int value that can be stored is 231 - 1
int z = 2147483647;

000000000000000000000000 00101010

100100010000001000000000 10000001

111111111111111101111111 11111111



8

Negative binary numbers
• left most bit is the "sign bit";  0 for positive, 1 for negative

all 1s represents -1 ;  subsequent negatives grow "downward"

int x = -1;

int y = -2, z = -3;

a single 1 followed by all zeros represents -(232 - 1)

int z = -2147483648;   // largest negative value

111111111111111111111111 11111111

000000000000000010000000 00000000

111111111111111111111111 11111110

111111111111111111111111 11111101



9

Negating in binary
• negating a binary number

"ones complement" : flip the bits (wrong)

"twos complement" : flip the bits, add 1 (preferred)

• converting a negative number from decimal to binary and back
add 1,  then convert abs. value to binary,  then flip bits

binary to decimal: flip bits,  convert to decimal,  subtract 1

int x = -27;   // -27 + 1 = -26
//  26 2 = 11010
//  flip   = 00101

111111111111111111111111 11100101



10

Bitwise operators

left shift pads remaining right digits with 0

right shift pads w/ 0 or value of a's leftmost (most significant) bit

most operators can be used with =, such as &=, ~=, >>=
what is the difference between & and &&?  ~ and ! ?

OR ; all bits that are set to 1 in a or in b or botha | b

RIGHT SHIFT ; moves all digits to the right by n places;
same as dividing  a / 2n

a >> n

LEFT SHIFT ; moves all digits to the left by n places;
same as multiplying  a * 2n

a << n
NOT ; the "ones complement" of the bits of a (all bits flipped)~a
XOR ; all bits that are set to 1 in a or in b but not in botha ^ b

AND ; all bits that are set to 1 in both a and ba & b

descriptionexpression



11

AND, OR, XOR, NOT

64 32 16  8  4  2  1
25 0  0  1  1  0  0  1
77 1  0  0  1  1  0  1

• What is  25 & 77 ? 0  0  0  1  0  0  1
• What is  25 | 77 ? 1  0  1  1  1  0  1
• What is  25 ^ 77 ? 1  0  1  0  1  0  0
• What is  25 & ~77 ? 0  0  1  0  0  0  0

0
1
1
0

bit1 ^ bit2

1
1
1
0

bit1 | bit2

1
0
0
0

bit1 & bit2

011
101
010

0

bit1
0

bit2
0

bit1 & ~bit2



12

Bit shifting
• Shifting left is like multiplying by powers of 2:

int x = 42;       //          101010
int y = x << 1;   //         1010100 ( 84 = 42 * 2)
int z = x << 3;   //       101010000 (336 = 42 * 8)
int w = x << 31;  //               0 (why?)

• Shifting right is like dividing by powers of 2:

int x = 42;       //          101010
int y = x >> 1;   //           10101 (21)
x = -42;          // 111111...010110
int z = x >> 1;   // 1111111...01011 (-21)

• often faster than multiplication, but don't worry about that
"Premature optimization is the root of all evil." -- Donald Knuth



13

Exercises
• Write functions to do the following tasks:

print an integer in binary

rotate bits by n places

get/set a given bit from a given integer

get/set a given range of bits from a given integer

invert a given bit(s) of a given integer

Should these be functions or preprocessor macros?



14

Recall: integer types
• integer types: char (1B), short (2B), int (4B), long (8B)
• modifiers: short, long, signed, unsigned (non-negative)

-9e18 to 9e18 - 1

0 to 4,294,967,295

-2,147,483,648 to 2,147,483,647

0 to 65,535

-32,768 to 32,767

0 to 255

range of values

8
4
4
2
2

1
bytes

%llilong long int

%c
octal   %o
hex  %x

char

%uunsigned int
%d, %iint

%huunsigned short int
%hi

printf

short int

type



15

Unsigned integers
unsigned int x = 42u;

changes interpretation of meaning of bits;  no negatives allowed

maximum is twice as high (leftmost bit not used to represent sign)

right-shift behavior not same (pads w/ 0 instead of sign bit)

seen in some libraries (size_t, malloc, etc.)

often used with bit-packing because we don't care about sign

why not use unsigned more often?

really, it's all just bits in the end...



16

Bit packing
• bit packing: storing multiple values in the same word of memory

example: storing a student's id, year, and exam score in a single int

• boolean (bool) values could really be just 1 bit (0 or 1)
"bit flags"

but a bool is actually a 1-byte integer value  (Why?)

• integers known to be small could use fewer than 32 bits
example: student IDs, 7 digits  (how many bits?)

example: homework/exam scores, up to 100  (how many bits?)



17

Bit flags
#define REGISTERED 0x1
#define FULLTIME 0x2
#define PAIDTUITION 0x4
#define ACADEMICPROBATION 0x8
#define HONORROLL 0x10   // 16
#define DEANSLIST 0x20   // 32
...

int student1 = 0;

// set student to be registered and on honor roll
student1 = student1 | REGISTERED | HONORROLL;

// make sure student isn't on probation
student1 = student1 & ~ACADEMICPROBATION;



18

Bit fields
typedef struct name {

unsigned name : bitsWide;
...
unsigned name : bitsWide;

} name;

declares a field that occupies exactly bitsWide bits

can be declared only inside a struct
exact ordering of bits is compiler-dependent

can't make pointers to them; not directly addressable



19

Binary data I/O

// writing binary data to a file
int values[5] = {10, 20, 30, 40, 50};
FILE* f = fopen("saved.dat", "w");
fwrite(values, sizeof(int), 5, f);

// reading binary data from a file
int values[5];
FILE* f = fopen("saved.dat", "r");
fread(values, sizeof(int), 5, f);

writes given number of elements 
from given array/buffer to file
(size_t means unsigned int)

size_t fwrite(void* ptr, size_t size,
size_t count, FILE* file)

reads given number of elements 
to given array/buffer from file

size_t fread(void* ptr, size_t size,
size_t count, FILE* file)

descriptionfunction


