
1

CSE 303
Lecture 21

Classes and Objects in C++

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

C++ classes
• class declaration syntax (in .h file):

class name {

private:

members;

public:

members;

};

• class member definition syntax (in .cpp file):

returntype classname::methodname(parameters) {

statements;

}

� unlike in Java, any .cpp or .h file can declare or define any class
(though the convention is still to put the Foo class in Foo.h/cpp)

3

A class's .h file
#ifndef _POINT_H
#define _POINT_H

class Point {
private:

int x;
int y; // fields

public:
Point(int x, int y); // constructor

int getX(); // methods
int getY();
double distance(Point& p);
void setLocation(int x, int y);

};

#endif

private/public members

are grouped into sections

MUST have a semicolon at end of class, or:
Point.cpp:4: error: new types may not be defined in a return type

Point.cpp:4: error: return type specification for constructor invalid

.h file still uses #ifndef to guard

against multiple inclusion

(many compilers also support

an alterative called #pragma once)

4

A class's .cpp file
#include "Point.h" // this is Point.cpp

Point::Point(int x, int y) { // constructor
this->x = x;
this->y = y;

}

int Point::getX() {
return x;

}

int Point::getY() {
return y;

}

void Point::setLocation(int x, int y) {
this->x = x;
this->y = y;

}

each member is defined on its own,

using :: scope operator to indicate class name

this is an unmodifiable pointer to the

current object (of type const Point*)

works a lot like Java's this, but cannot be

used to invoke a constructor

using this-> is optional unless names conflict

5

Exercise
• Make it so a Point can be constructed with no x/y parameter.

� If no x or y value is passed, the point is constructed at (0, 0).

• Write a translate method that shifts the position of a point by a

given dx and dy.

6

Exercise solution

// Point.h

public:

Point(int x = 0, int y = 0);

// Point.cpp

void Point::translate(int dx, int dy) {

setLocation(x + dx, y + dy);

}

7

More about constructors
• initialization list: alternate syntax for storing parameters to fields

� supposedly slightly faster for the compiler

class::class(params) : field(param), ..., field(param) {

statements;

}

Point::Point(int x, int y) : x(x), y(y) {}

• if you don't write a constructor, you get a default () constructor

� initializes all members to 0-equivalents (0.0, null, false, etc.)

• if your class has multiple constructors:

� it doesn't work to have one constructor call another

� but you can create a common init function and have both call it

8

Constructing objects
• client code creating stack-allocated object:

type name(parameters);

Point p1(4, -2);

• creating heap allocated (pointer to) object:

type* name = new type(parameters);

Point* p2 = new Point(5, 17);

� in Java, all objects are allocated on the heap

� in Java, all variables of object types

are references (pointers)
code

global data

heap

available

stack

p1

p2

methods175

yx

0xFD30F0

0x00FD30F0

0x086D0008

0x086D0004

methods-24

yx

9

A client program
// use_point.cpp
// g++ -g -Wall -o use_point Point.cpp use_point.cpp
#include <iostream>
#include "Point.h"
using namespace std;

int main() {
Point p1(1, 2);
Point p2(4, 6);
cout << "p1 is: (" << p1.getX() << ", "

<< p1.getY() << ")" << endl; // p1 is: (1, 2)
cout << "p2 is: (" << p2.getX() << ", "

<< p2.getY() << ")" << endl; // p2 is: (4, 6)
cout << "dist : " << p1.distance(p2) << endl;
return 0; // dist : 5

}

10

Client with pointers
// use_point.cpp
// g++ -g -Wall -o use_point Point.cpp use_point.cpp
#include <iostream>
#include "Point.h"
using namespace std;

int main() {
Point* p1 = new Point(1, 2);
Point* p2 = new Point(4, 6);
cout << "p1 is: (" << p1->getX() << ", "

<< p1->getY() << ")" << endl; // p1 is: (1, 2)
cout << "p2 is: (" << p2->getX() << ", "

<< p2->getY() << ")" << endl; // p2 is: (4, 6)
cout << "dist : " << p1->distance(*p2) << endl;
delete p1; // dist : 5
delete p2; // free
return 0;

}

11

Stack vs. heap objects
• which is better, stack or pointers?

� if it needs to live beyond function call (e.g. returning), use a pointer

� if allocating a whole bunch of objects, use pointers

• "primitive semantics" can be used on objects

� stack objects behave use primitive value semantics (like ints)

• new and delete replace malloc and free

� new does all of the following:

• allocates memory for a new object

• calls the class's constructor, using the new object as this

• returns a pointer to the new object

� must call delete on any object you create with new, else it leaks

12

Implicit copying
Why doesn't this code change p1?

int main() {

Point p1(1, 2);

cout << p1.getX() << "," << p1.getY() << endl;

example(p1);

cout << p1.getX() << "," << p1.getY() << endl;

return 0;

}

void example(Point p) {

p.setLocation(40, 75);

cout << "ex:" << p.getX() << "," << p.getY() << endl;

}

// 1,2

// ex:40,75

// 1,2

13

Object copying
• a stack-allocated object is copied whenever you:

� pass it as a parameter foo(p1);

� return it return p;

� assign one object to another p1 = p2;

• the above rules do not apply to pointers

� object's state is still (shallowly) copied if you dereference/assign

*ptr1 = *ptr2;

• You can control how objects are copied

by redefining the = operator for your class (ugh)

14

Objects as parameters
• We generally don't pass objects as parameters like this:

double Point::distance(Point p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

� on every call, the entire parameter object p will be copied

� this is slow and wastes time/memory

� it also would prevent us from writing a method that modifies p

15

References to objects
• Instead, we pass a reference or pointer to the object:

double Point::distance(Point& p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

� now the parameter object p will be shared, not copied

� are there any potential problems with this code?

16

const object references

• If the method will not modify its parameter, make it const:

double Point::distance(const Point& p) {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

� the distance method is promising not to modify p

• if it does, a compiler error occurs

• clients can pass Points without fear that their state will be changed

� which of these lines would be legal inside distance?

Point p2 = p;

Point& p3 = p;

17

const methods

• If the method will not modify the object itself, make it const:

double Point::distance(const Point& p) const {

int dx = x - p.getX();

int dy = y - p.getY();

return sqrt(dx * dx + dy * dy);

}

� a const after the parameter list signifies that the method will not

modify the object upon which it is called (this)

• helps clients know which methods are / aren't mutators

• helps compiler optimize method calls

� a const reference only allows const methods to be called on it

• we could call distance on p, but not setLocation

18

const and pointers

• const Point* p

� p points to a Point that is const; cannot modify that Point's state

� can reassign p to point to a different Point (as long as it is const)

• Point* const p

� p is a constant pointer; cannot reassign p to point to a different object

� can change the Point object's state by calling methods on it

• const Point* const p

� p points to a Point that is const; cannot modify that Point's state

� p is a constant pointer; cannot reassign p to point to a different object

(This is not one of the more beloved features of C++.)

19

Pointer, reference, etc.?
• How do you decide whether to pass a pointer, reference, or object?

• Some design principles:

� Minimize the use of object pointers as parameters.

(C++ introduced references for a reason. They are safer and saner.)

� Minimize passing objects by value, because it is slow, it has to copy the

entire object and put it onto the stack, etc.

� In other words, pass objects as references as much as possible.

• Though if you really want a copy, pass it as a normal object.

� Objects as fields are usually pointers (why not references?).

� If you are not going to modify an object, declare it as const.

� If your method returns a pointer/object field that you don't want the

client to modify, declare its return type as const.

