
1

CSE 303
Lecture 22

Advanced Classes and Objects in C++

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Arrays of objects
• array of objects

Point spointarray[5]; // stack
Point* hpointarray = new Point[5]; // heap

cout << spointarray[0].getX(); // 0

� immediately constructs each object with () constructor

• if no () constructor exists, a compiler error

� aoeu

x | y | methodsx | y | methodsx | y | methodsx | y | methodsx | y | methods

43210

3

Arrays of pointers
• array of pointers to objects (more common)

Point* spointarray[5]; // stack
Point** hpointarray = new Point*[5]; // heap

for (int i = 0; i < 4; i++) {
spointarray[i] = new Point(i, 2 * i);

cout << spointarray[i]->getX(); // i
}

� each element object must be created/freed manually

0xaf8612d00xdd8819cc0x9ea6f2100x8f7e23980xffed19c4

43210

x | y | methods x | y | methods x | y | methods x | y | methods x | y | methods

4

Operator overloading
• operator overloading: Redefining the meaning of a C++ operator in

particular contexts.

� example: the string class overloads + to do concatenation

� example: the stream classes overload << and >> to do I/O

• it is legal to redefine almost all C++ operators

� () [] ^ % ! | & << >> = == != < > and many others

� intended to be used when that operator "makes sense" for your type

• example: a Matrix class's * operator would do matrix multiplication

• allows your classes to be "first class citizens" like primitives

� cannot redefine operators between built-in types (int + int)

• a useful, but very easy to abuse, feature of C++ (not in C or Java)

5

Overloading syntax
public: // declare in .h

returntype operator op(parameters);

returntype classname::operator op(parameters) {

statements; // define in .cpp

}

� most overloaded operators are placed inside a class

• example: overriding Point + Point

� some overloaded operators don't go inside your class

• example: overriding int + Point

6

Overloaded comparison ops
• Override == to make objects comparable like Java's equals

� comparison operators like == return type bool

� by default == does not work on objects (what about Point*?)

� if you override == , you must also override !=

// Point.h
bool Point::operator==(const Point& p);

// Point.cpp
bool Point::operator==(const Point& p) {

return x == p.getX() && y == p.getY();
}

• Override <, >, etc. to make comparable like Java's compareTo
� even if you override < and ==, you must still manually override <=

7

Overriding <<

• Override << to make your objects printable like Java's toString

� note that the operator << goes outside your class (not a member)

� << accepts a reference to the stream and to your object

� returns a reference to the same stream passed in (why?)

// Point.h (outside class)
std::ostream& operator<<(std::ostream& out, const Point& p);

// Point.cpp
std::ostream& operator<<(std::ostream& out, const Point& p) {

out << "(" << p.getX() << ", " << p.getY() << ")";
return out;

}

� similarly, you can override >> on an istream to read in an object

8

Designing a class
• Suppose we want to design a class LineSegment, where each

object represents a 2D line segment between two points.

We should be able to:

� create a segment between two pairs of coordinates,

� ask a segment for its endpoint coordinates,

� ask a segment for its length,

� ask a segment for its slope, and

� translate (shift) a line segment's position.

• How should we design this class?

9

LineSegment.h
#ifndef _LINESEGMENT_H
#define _LINESEGMENT_H

#include "Point.h"

class LineSegment {
private:

Point* p1; // endpoints of line
Point* p2;

public:
LineSegment(int x1, int y1, int x2, int y2);
double getX1() const;
double getY1() const;
double getX2() const;
double getY2() const;
double length() const;
double slope() const;
void translate(int dx, int dy);

};

#endif

10

LineSegment.cpp
#include "LineSegment.h"

LineSegment::LineSegment(int x1, int y1, int x2, int y2) {
p1 = new Point(x1, y1);
p2 = new Point(x2, y2);

}

double LineSegment::length() const {
return p1->distance(*p2);

}

double LineSegment::slope() const {
int dy = p2->getY() - p1->getY();
int dx = p2->getX() - p1->getX();
return (double) dy / dx;

}

void LineSegment::translate(int dx, int dy) {
p1->setLocation(p1->getX() + dx, p1->getY() + dy);
p2->setLocation(p2->getX() + dx, p2->getY() + dy);

}
...

11

Problem: memory leaks
• if we create LineSegment objects, we'll leak memory:

LineSegment* line = new LineSegment(1, 2, 5, 4);
...
delete line;

� what memory is leaked, and why?

• the two Point objects p1 and p2 inside line are not freed

� the delete operator is a "shallow" delete operation

� it doesn't recursively delete/free pointers nested inside the object

• why not?

12

Destructors

public:

~classname(); // declare in .h

classname::~classname() { // define in .cpp

statements;

}

• destructor: Code that manages the deallocation of an object.

� usually not needed if the object has no pointer fields

� called by delete and when a stack object goes out of scope

� the default destructor frees the object's memory, but no pointers

• Java has a very similar feature to destructors, called a finalizer

13

Destructor example
// LineSegment.h
class LineSegment {

private:
Point* p1;
Point* p2;

public:
LineSegment(int x1, int y1, int x2, int y2);
double getX1() const;
...
~LineSegment();

};

// LineSegment.cpp
LineSegment::~LineSegment() {

delete p1;

delete p2;

}

14

Shallow copy bug
• A subtle problem occurs when we copy LineSegment objects:

LineSegment line1(0, 0, 10, 20);
LineSegment line2 = line1;
line2.translate(5, 3);

cout << line1.getX2() << endl; // 15 !!!

• When you declare one object using another, its state is copied

� it is a shallow copy; any pointers in the second object will store the

same address as in the first object (both point to same place)

� if you change what's pointed to by one, it affects the other

• even worse: the same p1, p2 above are freed twice!

15

Copy constructors
• copy constructor: Copies one object's state to another.

� called when you assign one object to another at declaration

LineSegment line2 = line1;

� can be called explicitly (same behavior as above)

LineSegment line2(line1);

� called when an object is passed as a parameter

foo(line1); // void foo(LineSegment l)...

• if your class doesn't have a copy constructor,

� the default one just copies all members of the object

� if any members are objects, it calls their copy constructors

• (but not pointers)

16

Copy constructor syntax
public:

classname(const classname& rhs); // declare in .h

classname::classname(const classname& rhs) {

statements; // define in .cpp

}

• in the copy constructor's body, do anything you need to do to

properly copy the object's state

17

Copy constructor example
// LineSegment.h
class LineSegment {

private:
Point* p1;
Point* p2;

public:
LineSegment(int x1, int y1, int x2, int y2);
LineSegment(const LineSegment& line);

...

// LineSegment.cpp
LineSegment::LineSegment(const LineSegment& line) {

p1 = new Point(line.getX1(), line.getY1()); // deep-copy
p2 = new Point(line.getX2(), line.getY2()); // both points

}

18

Assignment bug
• Another problem occurs when we assign LineSegment objects:

LineSegment line1(0, 0, 10, 20);
LineSegment line2(9, 9, 50, 80);
...
line2 = line1;

line2.translate(5, 3);

cout << line1.getX2() << endl; // 15 again !!!

• When you assign one object to another, its state is copied

� it is a shallow copy; if you change one, it affects the other

� assignment with = does NOT call the copy constructor (why not?)

• we wish the = operator behaved differently...

19

Overloading =
// LineSegment.h
class LineSegment {

private:
Point* p1;
Point* p2;
void init(int x1, int y1, int x2, int y2);

public:
LineSegment(int x1, int y1, int x2, int y2);
LineSegment(const LineSegment& line);
...
const LineSegment& operator=(const LineSegment& rhs);

...

20

Overloading = , cont'd.

// LineSegment.cpp
void LineSegment::init(int x1, int y1, int x2, int y2) {

p1 = new Point(x1, y1); // common helper init function
p2 = new Point(x2, y2);

}
LineSegment::LineSegment(int x1, int y1, int x2, int y2) {

init(x1, y1, x2, y2);
}

LineSegment::LineSegment(const LineSegment& line) {
init(line.getX1(), line.getY1(), line.getX2(), line.getY2());

}

const LineSegment& LineSegment::operator=(const LineSegment& rhs) {

init(rhs.getX1(), rhs.getY1(), rhs.getX2(), rhs.getY2());
return *this; // always return *this from =

}

21

An extremely subtle bug
• if your object was storing pointers to two Points p1, p2 but is then

assigned to have new state using =, the old pointers will leak!

• the correction:

const LineSegment& LineSegment::operator=(const LineSegment& rhs) {
delete p1;

delete p2;

init(rhs.getX1(), rhs.getY1(), rhs.getX2(), rhs.getY2());
return *this; // always return *this from =

}

22

Another subtle bug
• if an object is assigned to itself, our = operator will crash!

LineSegment line1(10, 20, 30, 40);
...
line1 = line1;

• the correction:

const LineSegment& LineSegment::operator=(const LineSegment& rhs) {
if (this != &rhs) {

delete p1;
delete p2;
init(rhs.getX1(), rhs.getY1(), rhs.getX2(), rhs.getY2());

}

return *this; // always return *this from =
}

23

Recap

• When writing a class with pointers as fields, you must define:

� a destructor

� a copy constructor

� an overloaded operator =

conclusion: C++ blows.

calls operator =p4 = p1;

calls copy constructorfoo(p4);

calls copy constructorPoint p4(p3);

calls copy constructorPoint p3 = p2;

calls 2-argument constructorPoint p2(17, 5);

calls 0-argument constructorPoint p1;

