
1

CSE 303
Lecture 24

Inheritance in C++, continued

slides created by Marty Stepp

http://www.cs.washington.edu/303/

2

Recall: Investments design

• we implemented the inheritance between Stock and DividendStock

• now we'd like an interface for the top-level supertype

3

Interfaces, abstract classes
• Java provides two special features for creating type hierarchies:

� interfaces: Sets of method declarations with no bodies.

Classes can promise to implement an interface.

Provides a supertype without any code sharing.

• key benefit: polymorphism. Can treat multiple types the same way.

� abstract classes: Partially implemented classes that can have a mixture

of declarations (without bodies) and definitions (with bodies).

• a hybrid between a class and an interface

• C++ does not have interfaces, but it (sort of) has abstract classes.

4

Pure virtual methods
class Name {

public:

virtual returntype name(parameters) = 0;

...

};

• pure virtual method: One that is declared but not implemented.

� If a class has any pure virtual methods, no objects of it can be made.

• We call this an abstract class.

� declared by setting the method equal to 0

� must be implemented by subclasses (else they will be abstract)

5

An "interface"
#ifndef _ASSET_H

#define _ASSET_H

// Represents assets held in an investor's portfolio.

class Asset {

public:

virtual double cost() const = 0;

virtual double marketValue() const = 0;

virtual double profit() const = 0;

};

#endif

• Simulate an interface using a class with all pure virtual methods

� we don't need Asset.cpp, because no method bodies are written

� other classes can extend Asset and implement the methods

6

Multiple inheritance
class Name : public BaseClass1, public BaseClass2, ...,

public BaseClassN {

...

};

• single inheritance: A class has exactly one superclass (Java)

• multiple inheritance: A class may have >= 1 superclass (C++)

� powerful

� helps us get around C++'s lack of interfaces

• (can extend many abstract classes if necessary)

� can be confusing

� often leads to conflicts or strange bugs

7

Potential problems
• common dangerous pattern: "The Diamond"

� classes B and C extend A

� class D extends A and B

• problems:

� D inherits two copies of A's members

� If B and C both define a member with

the same name, they will conflict in D

• How can we solve these problems and disambiguate?

D

B C

A

8

Disambiguating
class B { // B.h

public:
virtual void method1();

};

class C { // C.h
public:

virtual void method1();
};

// D.cpp
void D::foo() {

method1(); // error - ambiguous reference to method1
B::method1(); // calls B's version

}

• Explicit resolution is required to disambiguate the methods

9

Virtual base classes
class Name : public virtual BaseClass1, ...,

public virtual BaseClassN {

...

};

• declaring base classes as virtual eliminates the chance that a

base class's members will be included twice

10

Friends (with benefits?)
class Name {

friend class Name;

...

};

• a C++ class can specify another class or function as its friend

� the friend is allowed full access to the class's private members!

� a selective puncture in the encapsulation of the objects

� (should not be used often)

• common usage: on overloaded operators outside a class (e.g. <<)

11

Private inheritance

class Name : private BaseClass {

...

};

� private inheritance: inherits behavior but doesn't tell anybody

• internally in your class, you can use the inherited behavior

• but client code cannot treat an object of your derived class as though it

were an object of the base class (no polymorphism/subtype)

• a way of getting code reuse without subtyping/polymorphism

12

Objects in memory

A* var1 = new B();

• each object in memory consists of:

� its fields, in declaration order

� a pointer to a structure full of information

about the object's methods

(a virtual method table or vtable)

� one vtable is shared by all objects of a class

� the vtable also contains information about

the type of the object

• use g++ -fdump-class-hierarchy

to see memory layout

field 3

field 2

field 1

__vptr

method 1

method 3

method 2

type_info

var1

0

4

8

0

4

8

12

13

Object memory layout
class A {

int field1;
virtual void m1(int x);
virtual void m2(int x);
virtual void m3(int x);

};

class B : public A {
float field2;
virtual void m1(int x);

};

class C : public B {
int field3;
virtual void m2(int x);

};

int main() {
C var1;
...

}

var1

0

4

8

12

type_info

B::m1()

C::m2()

A::m3()

0

4

8

12

__vptr

field1

field2

field3

vtable for class C

14

Multiple inheritance layout
class A {

int field1;
virtual void m1(int x);
virtual void m2(int x);

};

class B {
float field2;
virtual void m3(int x);

};

class C : public A,
public B {

int field3;
virtual void m2(int x);
virtual void m4(int x);

};

int main() {
C var1;
...

}

var1

0

4

8

12

type_info

A::m1()

C::m2()

C::m4()

__vptr10

4

8

12

16

field1

__vptr2

field2

field3

vtable1 for class C

(A/C view)

0

4

type_info

B::m3()

vtable2 for class C

(B view)

15

Type-casting pointers

Person* p1 = new Student();

Person* p2 = new Teacher();

Student* s1 = (Student*) p1; // ok

Student* s2 = (Student*) p2; // subtle bugs!

� casting up the inheritance tree works

� but if the cast fails, can introduce subtle bugs

� why is the above code a problem?

• p2's vtable is the Teacher vtable; using it as a Student will cause the wrong

methods to be called, or the wrong addresses to be mapped on lookups

Person

Student Teacher

16

Dynamic (checked) casts

Person* p1 = new Student();

Person* p2 = new Teacher();

Student* s1 = dynamic_cast<Student*>(p1); // ok

Student* s2 = dynamic_cast<Student*>(p2); // s4 == NULL

� dynamic_cast returns NULL if the cast fails

� code still crashes, but at least it doesn't behave in unexpected ways

Person

Student Teacher

17

Slicing
class A { ... };

class B : public A { ... };

...

B var1;

A var2 = var1; // sliced!

• slicing: When a derived object is converted into a base object.

� extra info from B class is lost in var2

� often, this is okay and doesn't cause any problems

� but can lead to problems if data from the "A part" of var1 depends on

data from the "B part"

var2

__vptr0

4

8

12

16

field1_A

field2_A

field3_B

field4_B

