
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 3— I/O Redirection, Shell Scripts

CSE 303 Winter 2009, Lecture 3 1

'

&

$

%

Where are We

• A simple view of the system: files, users, processes, shell

• Lots of small useful programs; more to come

• An ever-more-complicated shell definition:

– Filename expansion

– Command-line editing

– History expansion

– I/O redirection

– Programming constructs

– Variables

CSE 303 Winter 2009, Lecture 3 2

'

&

$

%

Simple view of input/output

• Old news: Programs take an array of strings as arguments

• Also: Programs return an integer (convention: 0 for “success”)

The shell also sets up 3 “streams” of data for the program to access:

• stdin a.k.a. 0: an input stream

• stdout a.k.a. 1: an output stream

• stderr a.k.a. 2: another output stream

The default shell behavior uses the keyboard for stdin and the shell

window for stdout and stderr.

Examples:

ls prints files stdout and “No match” to stderr.

mail takes message body from stdin (waiting for C-d (“end of file”)

to stop taking input).

CSE 303 Winter 2009, Lecture 3 3

'

&

$

%

File Redirection
Using arcane characters, we can tell the shell to use files instead of the

keyboard/screen (Bash Manual, Section 3.6):

• redirect input: cmd < file

• redirect output, overwriting file: cmd > file

• redirect output, appending to file: cmd >> file

• redirect error output: cmd 2> file

• redirect output and error output to file: cmd &> file

• ...

Examples:

• How I get the histories for the web page.

• ls uses stdout and stderr.

• Using cat to copy information to/from files.

CSE 303 Winter 2009, Lecture 3 4

'

&

$

%

Pipes

cmd1 | cmd2

Change the stdout of cmd1 and the stdin of cmd2 to be the same,

new stream!

Very powerful idea:

• In the shell, larger command out of smaller commands

• To the user, combine small programs to get more usefulness

– Each program can do one thing and do it well!

Examples:

• foo --help | less

• djpeg me.jpg | pnmscale -xysize 100 150 | cjpeg >

me thumb.jpg

CSE 303 Winter 2009, Lecture 3 5

'

&

$

%

cat and redirection

Just to show there is some math underlying all this nonsense, here are

some fun and useless equivalences (like 1 · y = y):

• cat y = cat < y

• x < y = cat y | x

• x | cat = x

CSE 303 Winter 2009, Lecture 3 6

'

&

$

%

Combining Commands

Combining simpler commands to form more complicated ones is very

programming-like. In addition to pipes, we have:

• cmd1 ; cmd2 (sequence)

• cmd1 || cmd2 (or, using int result – the “exit status”)

• cmd1 && cmd2 (and, like or)

• cmd1 ‘cmd2 ‘ (use output of cmd2 as input to cmd1). (Very

useful for your homework. Note cmd2 surrounded by backquotes,

not regular quotes)

– Useless example: cd ‘pwd‘.

– Non-useless example: mkdir ‘whoami‘A‘whoami‘.

Note: Previous line’s exit status is in $?.

CSE 303 Winter 2009, Lecture 3 7

'

&

$

%

Non-alphabet soup

List of characters with special (before program/built-in runs) meaning

is growing: ‘ ! % & * ~ ? [] " ’ \ > < | $ (and we’re not

done).

If you ever want these characters or (space) in something like an

argument, you need some form of escaping ; each of " ’ \ have

slightly different meaning.

First approximation:

• "stuff" treats stuff as a single argument but allows some

substitutions for $variables.

example: cat "to-do list"

• ’stuff’ suppresses basically all substitutions and treats stuff

literally.

CSE 303 Winter 2009, Lecture 3 8

'

&

$

%

Toward Scripts...

A running shell has a state, i.e., a current

• working directory

• user

• collection of aliases

• history

• ...

In fact, next time we will learn how to extend this state with new shell

variables.

We learned that source can execute a file’s contents, which can affect

the shell’s state.

CSE 303 Winter 2009, Lecture 3 9

'

&

$

%

Running a script

What if we want to run a bunch of commands without changing our

shell’s state?

Answer: start a new shell (sharing our stdin, stdout, stderr), run the

commands in it, and exit.

Better answer: Automate this process.

• A shell script as a program (user doesn’t even know it’s a script).

• Now we’ll want the shell to end up being a programming language

• But it will be a bad one except for simple things

CSE 303 Winter 2009, Lecture 3 10

'

&

$

%

Writing a script

• Make the first line exactly: #!/bin/bash

• Give yourself “execute” permission on the file

• Run it

Note: The shell consults the first line:

• If a shell-program is there, launch it and run the script

• Else if it’s a “real executable” run it (more later).

Example: listhome

CSE 303 Winter 2009, Lecture 3 11

'

&

$

%

Accessing arguments

The script accesses the arguments with $i to get the ith one (name of

program is $0).

Example: make thumbnail1

Also very useful for homework: shift (manual Section 4.1)

Example: countdown

We would like optional arguments and/or usage messages. Need:

• way to find out the number of arguments

• a conditional

• some stuff we already have

Example: make thumbnail2

CSE 303 Winter 2009, Lecture 3 12

'

&

$

%

More expressions

bash expressions can be:

• math or string tests (e.g., -lt)

• logic (&&, ||, !) (if you use double-brackets)

• file tests (very common; see Pocket Guide)

• math (if you use double-parens)

Gotcha: parens and brackets must have spaces before and after them!

Example: dcdls (double cd and ls) can check that arguments are

directories.

Exercise: script that replaces older file with newer one

Exercise: make up your own

CSE 303 Winter 2009, Lecture 3 13

'

&

$

%

Review

• The shell runs programs and builtins, interpreting special

characters for filenames, history, I/O redirection.

• Some builtins like if support rudimentary programming.

• A script is a program to its user, but is written using shell

commands.

So the shell language is okay for interaction and “quick-and-dirty”

programs, making it a strange beast.

For both, shell variables are extremely useful.

CSE 303 Winter 2009, Lecture 3 14

'

&

$

%

Variables

i=17 # no spaces

set

echo $i

set | grep i

echo $i

unset i

echo $i

f1=$1

(The last is very useful in scripts before shifting, e.g., see homework.)

Enough for your homework (arithmetic, conditionals, shift, variables,

redirection, ...)

Gotcha: using undefined variables (e.g., because of typo) doesn’t fail

(just the empty string).

CSE 303 Winter 2009, Lecture 3 15

