Contrapositive

We showed $p \rightarrow q \equiv \neg q \rightarrow \neg p$ with a truth table. Let's do a proof.
Try this one on your own. Remember

1. Know what you're trying to show.
2. Stay on target - take steps to get closer to your goal.

Hint: think about your tools. There are lots of rules with AND/OR/NOT, but very few with implications...

Properties of Logical Connectives

For every propositions p, q, r the following hold:

- Identity
$-p \wedge \mathrm{~T} \equiv p$
$-p \vee \mathrm{~F} \equiv p$
- Domination
$-p \vee \mathrm{~T} \equiv \mathrm{~T}$
$-p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
$-p \vee p \equiv p$
$-p \wedge p \equiv p$
- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative
$-(p \vee q) \vee r \equiv p \vee(q \vee r)$
$-(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
$-p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$-p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
$-p \vee(p \wedge q) \equiv p$
$-p \wedge(p \vee q) \equiv p$
- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$
- DeMorgan's Laws

$$
\begin{aligned}
& -\neg(p \vee q) \equiv \neg p \wedge \neg q \\
& -\neg(p \wedge q) \equiv \neg p \vee \neg q
\end{aligned}
$$

- Double Negation

$$
\neg \neg p \equiv p
$$

- Law of Implication

$$
p \rightarrow q \equiv \neg p \vee q
$$

- Contrapositive

$$
p \rightarrow q \equiv \neg q \rightarrow \neg p
$$

