
Warm-Up

“Dr. Evil will attack you with laser sharks, unless you pay him one-million 
dollars.”

How would you translate “unless” into logic?



Warm-Up – Solution 

“Dr. Evil will attack you with laser sharks, unless you pay him one-million 
dollars.”

If you pay Dr. Evil his one-million dollars, are you safe from the laser 
sharks?
This is Dr. Evil! He hasn’t promised you that’s his full list of demands.

If you do not pay Dr. Evil one-million dollars, then he will attack you 
with laser sharks. 

Is the only promise you really have. 



Warm-Up – Solution 

“Dr. Evil will attack you with laser sharks, unless you pay him one-million 
dollars.”

𝑝: Dr. Evil will attack you with laser sharks

𝑞: You pay him one-million dollars

The last slide would give us: ¬𝑞 → 𝑝

If Dr. Evil doesn’t attack you with laser sharks, you must have paid him 
his million dollars, right? ¬𝑝 → 𝑞 Are those both good translations?

They are! We’ll talk about why at the end of this lecture…



Our First Proof and 
Digital Logic

CSE 311 Fall 2020

Lecture 3
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Today

10 minutes of syllabus

Our first proof!

Contrapositives and digital logic.



Announcements

Homework 1 Problem 6 clarified (download a new version of the pdf).

Office Hours start this week.



Order of Operations
Just like you were taught PEMDAS
e.g. 3 + 2 ⋅ 4 = 11 not 24. 

Logic also has order of operations.

Parentheses

Negation

And

Or, exclusive or

Implication

Biconditional

Within a level, apply from left to right. 

Other authors place And, Or at the same level – it’s good practice to use 
parentheses even if not required.

For this course: each of these is it’s own level!

e.g. “and”s have precedence over “or”s



Office Hours

A chance to talk to staff about the class.

Advice:
You don’t have to have a question to come to office hours! (It can help, though)

Aim as early in the week as possible.

We won’t answer every kind of question in office hours:

We don’t “pregrade” homework. We won’t tell you whether something is 
right or wrong.

We will help on homework, but not usually by “giving hints.” We’ll usually ask 
questions about what you’ve tried, ask questions to help you decide what to do 
next, or point you to good examples to look at. 

You’re allowed to talk to others at office hours, as long as you’re still following the 
collaboration policy.



Homework Submissions

Make sure we can read what you submit. 
We can’t spend 5 minutes per submission deciding if that’s a 𝑝 or a 𝑞.

Typesetting guarantees we can read it.

Microsoft Word’s equation editor is now halfway decent!

LaTeX is the industry standard for typesetting (if you go to CS grad school, you’ll 
use it for all your papers). Overleaf is the easiest way to get started.

Need to know the code for a symbol? Detexify! Word uses LaTeX codes…mostly…

https://detexify.kirelabs.org/classify.html


Our First Proof



Last Time

We showed

DeMorgan’s Laws:

¬ 𝑝 ∨ 𝑞 ≡ ¬𝑝 ∧ ¬𝑞 and ¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞

And the Law of Implication 

𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞



Properties of Logical Connectives
We will always give 

you this list!

For every propositions 𝑝, 𝑞, 𝑟 the following hold:



Using Our Rules

WOW that was a lot of rules.

Why do we need them? Simplification!

Let’s go back to the “law of implication” example. 

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T

When is the implication true? Just “or” each of the three 

“true” lines!

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
Also seems pretty reasonable

So is 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ (¬𝑝 ∨ 𝑞)
i.e. are these both alternative representations of 𝑝 → 𝑞?



Our First Proof

We could make another truth table (you should! It’s a good exercise)

But we have another technique that is nicer. 

Let’s try that one
Then talk about why it’s another good option. 

We’re going to give an iron-clad guarantee that:

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ ¬𝑝 ∨ 𝑞

i.e. that this is another valid “law of implication”



Our First Proof

How do we write a proof?

It’s not always plug-and-chug…we’ll be highlighting strategies 
throughout the quarter.

To start with:

Make sure we know what we want to show…



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

None of the rules look like this

Practice of Proof-Writing:

Big Picture…WHY do we think this 

might be true? 

The last two “pieces” came from the 

vacuous proof lines…maybe the “¬𝑝” 

came from there? Maybe that 

simplifies down to ¬𝑝



Let’s apply a rule

¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)

The law says:

𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ ¬𝑝 ∧ (𝑞 ∨ ¬𝑞)



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

None of the rules look like this

Practice of Proof-Writing:

Big Picture…WHY do we think this 

might be true? 

The last two “pieces” came from the 

vacuous proof lines…maybe the “¬𝑝” 

came from there? Maybe that 

simplifies down to ¬𝑝



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡

¬𝑝

∨ 𝑝

∧ ¬𝑝 ∨ 𝑞

≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces Associative law

Connect up the things we’re working on.



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞

≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Distributive law

We think ¬𝑝 is important, let’s isolate it.



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]

≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Negation

Should make things simpler.



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡
¬𝑝
∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞

≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Domination

Should make things simpler.



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡ (¬𝑝 ∨ 𝑞)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑝 ∨ 𝑞

If we apply the distribution rule,

We’d get a (¬𝑝 ∨ 𝑞)



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡ (¬𝑝 ∨ 𝑞)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑝 ∨ 𝑞

If we apply the distribution rule,

We’d get a (¬𝑝 ∨ 𝑞)

Commutative

Make the expression look exactly like the law (more on this later)



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞

≡ (¬𝑝 ∨ 𝑞)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑝 ∨ 𝑞

If we apply the distribution rule,

We’d get a (¬𝑝 ∨ 𝑞)

Distributive

Creates the (¬𝑝 ∨ 𝑞) we were hoping for.



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ 𝑝 ∨ ¬𝑝 ∧ (¬𝑝 ∨ 𝑞)
≡ T ∧ ¬𝑝 ∨ 𝑞

≡ (¬𝑝 ∨ 𝑞)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑝 ∨ 𝑞

If we apply the distribution rule,

We’d get a (¬𝑝 ∨ 𝑞)

Commutative

Make the expression look exactly like the law (more on this later)
Negation

Simplifies the part we want to disappear.



Simplify T∧ (¬𝑝 ∨ 𝑞) to (¬𝑝 ∨ 𝑞)

For every propositions 𝑝, 𝑞, 𝑟 the following hold:



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ 𝑝 ∨ ¬𝑝 ∧ (¬𝑝 ∨ 𝑞)
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑝 ∨ 𝑞

If we apply the distribution rule,

We’d get a (¬𝑝 ∨ 𝑞)

Commutative followed by Domination 

Look exactly like the law, then apply it.

We’re done!!! 



Commutativity

We had the expression 𝑝 ∧ 𝑞 ∨ [¬𝑝]

But before we applied the distributive law, we switched the order…why?

The law says 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ p ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

not 𝑞 ∧ 𝑟 ∨ 𝑝 ≡ 𝑞 ∨ 𝑝 ∧ (𝑟 ∨ 𝑝)

So technically we needed to commute first.

Eventually (in about 2 weeks) we’ll skip this step. For now, we’re doing 
two separate steps.
Remember this is the “training wheel” stage. The point is to be careful.



More on Our First Proof

We now have an ironclad guarantee that

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ (¬𝑝 ∨ 𝑞)

Hooray! But we could have just made a truth-table. Why a proof?

Here’s one reason.

Proofs don’t just give us an ironclad guarantee. They’re also an 
explanation of why the claim is true.

The key insight to our simplification was “the last two pieces were the 
vacuous truth parts – the parts where 𝑝 was false” 

That’s in there, in the proof.



Our First Proof

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ 𝑝 ∨ ¬𝑝 ∧ (¬𝑝 ∨ 𝑞)
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑝 ∨ 𝑞)

Associative

Distributive

Negation

Domination

Commutative

Distributive

Commutative

Negation

Commutative

Domination

The last two terms are 

“vacuous truth” – they 

simplify to ¬𝑝

𝑝 no longer matters in 𝑝 ∧
𝑞 if ¬𝑝 automatically 

makes the expression true.



More on Our First Proof

With practice (and quite a bit of squinting) you can see not just the 
ironclad guarantee, but also the reason why something is true.

That’s not easy with a truth table.

Proofs can also communicate intuition about why a statement is true.
We’ll practice extracting intuition from proofs more this quarter.



Converse, Contrapositive

How do these relate to each other?

p q p → q q → p p q p →q q →p

T T

T F

F T

F F

Implication:

p → q

Converse: 

q → p

Contrapositive:

q →p

Inverse: 

p →q

If it’s raining, then I 

have my umbrella.

If I have my umbrella, 

then it is raining.

If I don’t have my umbrella, 

then it is not raining.

If it is not raining, then I 

don’t have my umbrella.



Converse, Contrapositive

An implication and its contrapositive

have the same truth value!

p q p → q q → p p q p →q q →p

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T

Implication:

p → q

Converse: 

q → p

Contrapositive:

q →p

Inverse: 

p →q



Contrapositive

We showed 𝑝 → 𝑞 ≡ ¬𝑞 → ¬𝑝 with a truth table. Let’s do a proof.

Try this one on your own. Remember

1. Know what you’re trying to show.

2. Stay on target – take steps to get closer to your goal.

Hint: think about your tools. There are lots of rules with AND/OR/NOT, but very few 

with implications…

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse311 and login 

with your UW identity

Or text cse311 to 22333



Contrapositive

𝑝 → 𝑞 ≡ ¬𝑝 ∨ 𝑞
≡ 𝑞 ∨ ¬𝑝
≡ ¬¬𝑞 ∨ ¬𝑝
≡ ¬𝑞 → ¬𝑝

Law of Implication

Commutativity

Double Negation

Law of Implication

All of our rules deal with ORs and ANDs, let’s switch the implication 

to just use AND/NOT/OR.

And do the same with our target

It’s ok to work from both ends. In fact it’s a very common 

strategy!

Now how do we get the top to look like the bottom? 

Just a few more rules and we’re done!



Digital Logic



Digital Circuits

Computing With Logic
T corresponds to 1 or “high” voltage 

F corresponds to 0 or “low” voltage

Gates 
Take inputs and produce outputs (functions)

Several kinds of gates

Correspond to propositional connectives (most of them)



And Gate

p q p  q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Connective AND Gate

q

p
OUTAND

“block looks like D of AND”

p
OUTAND

qp  q

vs.



Or Gate

p q p  q

T T T

T F T

F T T

F F F

p q OUT

1 1 1

1 0 1

0 1 1

0 0 0

OR Connective OR Gate

p
OUTOR

qp  q

vs.

p

q
OR

“arrowhead block looks like V”

OUT



Not Gates

p

NOT Gate

p  p

T F

F T

p OUT

1 0

0 1

vs.NOT Connective

Also called 

inverter

p OUTNOT

p OUTNOT



Blobs are Okay!

p OUTNOT

p
q

OUTAND

p
q

OUTOR

You may write gates using blobs instead of shapes!



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

𝑝 ∧ ¬𝑞 ∨ (¬𝑞 ∧ 𝑟)



More Vocabulary



Vocabulary!

Tautology if it is always true.

Contradiction if it is always false.

Contingency if it can be both true and false.

A proposition is a….

Tautology

If 𝑝 is true, 𝑝 ∨ ¬𝑝 is true; if 𝑝 is false, 𝑝 ∨ ¬𝑝 is true.

Contradiction

If 𝑝 is true, 𝑝⊕ 𝑝 is false; if 𝑝 is false, 𝑝⊕ 𝑝 is false.

Contingency If 𝑝 is true and 𝑞 is true, 𝑝 → 𝑞 ∧ 𝑝 is true; 

If 𝑝 is true and 𝑞 is false, 𝑝 → 𝑞 ∧ 𝑝 is false.

𝑝 ∨ ¬𝑝

𝑝 ⊕ 𝑝

𝑝 → 𝑞 ∧ 𝑝



Another Proof

Let’s prove that 𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) is a tautology.

Alright, what are we trying to show?



Another Proof

𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) ≡ ¬ 𝑝 ∧ 𝑞 ∨ 𝑞 ∨ 𝑝
≡ ¬𝑝 ∨ ¬𝑞 ∨ (𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑞 ∨ 𝑞 ∨ 𝑝 )

≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑞 ∨ 𝑝

≡ ¬𝑝 ∨ ( 𝑞 ∨ ¬𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (T ∨ 𝑝)
≡ ¬𝑝 ∨ (𝑝 ∨ T)
≡ ¬𝑝 ∨ 𝑝
≡ 𝑝 ∨ ¬𝑝
≡ T

Law of Implication

It’s easier if everything is AND/OR/NOT
Associative (twice)

Put 𝑞,¬𝑞 next to each other.

DeMorgan’s Law

Gets rid of some parentheses/just a gut feeling.
Commutative, Negation

Simplify out the 𝑞,¬𝑞.Commutative, Domination

Simplify out the T.Commutative, Negation

Simplify out the 𝑝,¬𝑝.

Proof-writing tip:

Take a step back.
Pause and carefully look 

at what you have. You 

might see where to go 

next…

We’re done!



Another Proof

𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) ≡ ¬ 𝑝 ∧ 𝑞 ∨ 𝑞 ∨ 𝑝
≡ ¬𝑝 ∨ ¬𝑞 ∨ (𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑞 ∨ 𝑞 ∨ 𝑝 )

≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑞 ∨ 𝑝

≡ ¬𝑝 ∨ ( 𝑞 ∨ ¬𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (T ∨ 𝑝)
≡ ¬𝑝 ∨ (𝑝 ∨ T)
≡ ¬𝑝 ∨ 𝑝
≡ 𝑝 ∨ ¬𝑝
≡ T

Law of implication

DeMorgan’s Law

Associative

Associative

Commutative

Negation

Commutative

Domination

Commutative

Negation



Computing Equivalence

Given two propositions, can we write an algorithm to 
determine if they are equivalent?

What is the runtime of our algorithm?



Computing Equivalence

Given two propositions, can we write an algorithm to 
determine if they are equivalent?

Yes!  Generate the truth tables for both propositions and check 

if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F).  If there are 

𝒏 atomic propositions, there are 𝟐𝒏 rows in the truth table.






