
Normal Forms and 
Predicates

CSE 311 Autumn 2020

Lecture 5



Step One

Input: day of the week, Boolean talkToSomeone

Output: The way to get your question answered, according to the 
following rules:

On M,Tu,W,F if you want to talk, go to office hours

On Th if you want to talk, go to section

Monday through Friday, if you don’t want to talk ask on Ed

On Saturday or Sunday, text a friend (whether you want to talk or not)

Take 2 minutes plan what your code might look like.



Step One

One possibility (there are many)



Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1



Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1

¬𝑑2 ∧ ¬𝑑1 ∧ ¬𝑑0 ∧ 𝑠

¬𝑑2 ∧ ¬𝑑1 ∧ 𝑑0 ∧ 𝑠

¬𝑑2 ∧ 𝑑1 ∧ ¬𝑑0 ∧ 𝑠

𝑑2 ∧ ¬𝑑1 ∧ ¬𝑑0 ∧ 𝑠

𝑜𝑢𝑡0 = ¬𝑑2 ∧ ¬𝑑1 ∧ ¬𝑑0 ∧ 𝑠 ∨ ¬𝑑2 ∧ ¬𝑑1 ∧ 𝑑0 ∧ 𝑠 ∨
¬𝑑2 ∧ 𝑑1 ∧ ¬𝑑0 ∧ 𝑠 ∨ (𝑑2 ∧ ¬𝑑1 ∧ ¬𝑑0 ∧ 𝑠)



Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1

𝑑2
′ 𝑑1′𝑑0′𝑠

𝑑2′𝑑1′𝑑0𝑠

𝑑2′𝑑1𝑑0′𝑠

𝑑2𝑑1′𝑑0′𝑠

𝑜𝑢𝑡0 = 𝑑2
′ 𝑑1

′𝑑0′𝑠 + 𝑑2′𝑑1′𝑑0𝑠+𝑑2′𝑑1𝑑0′𝑠+𝑑2𝑑1′𝑑0′𝑠



Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1

𝑑2
′ 𝑑1′𝑑0′𝑠

𝑑2′𝑑1′𝑑0𝑠

𝑑2′𝑑1𝑑0′𝑠

𝑑2𝑑1′𝑑0′𝑠

𝑜𝑢𝑡0 = (𝑑2
′ 𝑑1

′𝑑0′ + 𝑑2′𝑑1′𝑑0+𝑑2′𝑑1𝑑0′+𝑑2𝑑1′𝑑0′)𝑠



Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1

Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse311 and 

login with your UW identity

Or text cse311 to 22333

Find the formula for 

𝑜𝑢𝑡1 in both Boolean 

algebra and 

propositional logic.

If you have extra time, 

draw the circuit 

representation.



Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1

𝑜𝑢𝑡1 = 𝑑2
′ 𝑑1𝑑0𝑠

𝑜𝑢𝑡1 = ¬𝑑2 ∧ 𝑑1 ∧ 𝑑0 ∧ 𝑠



Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1

𝑜𝑢𝑡2 = 𝑑2
′ 𝑑1

′𝑑0
′ 𝑠′ + 𝑑2

′ 𝑑1
′𝑑0𝑠

′ + 𝑑2
′ 𝑑1𝑑0𝑠

′ + 𝑑2𝑑1
′𝑑0

′ 𝑠′

𝑜𝑢𝑡2 = 𝑑2
′ 𝑠′ 𝑑1

′𝑑0
′ + 𝑑1

′𝑑0 + 𝑑1𝑑0 + 𝑑2𝑑1
′𝑑0

′ 𝑠′



Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1

Monday 0 0 0 1 1

Tuesday 0 0 1 0 1

Tuesday 0 0 1 1 1

Wednesday 0 1 0 0 1

Wednesday 0 1 0 1 1

Thursday 0 1 1 0 1

Thursday 0 1 1 1 1

Friday 1 0 0 0 1

Friday 1 0 0 1 1

Saturday 1 0 1 0 1

Saturday 1 0 1 1 1

Sunday 1 1 0 0 1

Sunday 1 1 0 1 1

--- 1 1 1 0

--- 1 1 1 1

𝑜𝑢𝑡3 = 𝑑2 𝑑1
′𝑑0 + 𝑑1𝑑0

′ + 𝑑1𝑑0



𝑜𝑢𝑡0 = 𝑑2
′ 𝑑1

′𝑑0′𝑠 + 𝑑2′𝑑1′𝑑0𝑠+𝑑2′𝑑1𝑑0′𝑠+𝑑2𝑑1′𝑑0′𝑠







Ick

WOW that’s ugly.

Be careful when wires cross – draw one “jumping over” the other.



Can we do better

Maybe the factored version will be better?

𝑜𝑢𝑡0 = (𝑑2
′ 𝑑1

′𝑑0′ + 𝑑2′𝑑1′𝑑0+𝑑2′𝑑1𝑑0′+𝑑2𝑑1′𝑑0′)𝑠







The Factored Version

Ehhhhhhh, it’s a little better?

Part of the problem here is Robbie’s art skills. 

Part is some layout choices – commuting the terms might make things 
prettier.

Most of the problem is just the circuit is complicated.

𝑜𝑢𝑡3 is a little better.





Can we use these for anything?

Sometimes these concrete formulas lead to easier observations.

For example, we might have noticed we factored out 𝑠 or 𝑠′in three of 
the four, which suggests switching 𝑠 first.

We could see that from the rules too! But sometimes switching 
representations helps.



Can we use these for anything?

Is this code better? Maybe, maybe not. 

It’s another tool in your toolkit for thinking about logic
Including logic you write in code!



Takeaways

Yet another notation for propositions.

These are just more representations – there’s only one underlying set of 
rules. 

Next time: wrap up digital logic and the tool really represent 𝑥 > 5.



Another Proof

Let’s prove that 𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) is a tautology.

Alright, what are we trying to show?



Another Proof

𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) ≡ ¬ 𝑝 ∧ 𝑞 ∨ 𝑞 ∨ 𝑝
≡ ¬𝑝 ∨ ¬𝑞 ∨ (𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑞 ∨ 𝑞 ∨ 𝑝 )

≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑞 ∨ 𝑝

≡ ¬𝑝 ∨ ( 𝑞 ∨ ¬𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (T ∨ 𝑝)
≡ ¬𝑝 ∨ (𝑝 ∨ T)
≡ ¬𝑝 ∨ T
≡ T

Law of Implication

It’s easier if everything is AND/OR/NOT
Associative (twice)

Put 𝑞,¬𝑞 next to each other.

DeMorgan’s Law

Gets rid of some parentheses/just a gut feeling.
Commutative, Negation

Simplify out the 𝑞,¬𝑞.Commutative, Domination, Domination

Simplify until we get T.

Proof-writing tip:

Take a step back.
Pause and carefully look 

at what you have. You 

might see where to go 

next…

We’re done!



Another Proof

𝑝 ∧ 𝑞 → (𝑞 ∨ 𝑝) ≡ ¬ 𝑝 ∧ 𝑞 ∨ 𝑞 ∨ 𝑝
≡ ¬𝑝 ∨ ¬𝑞 ∨ (𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (¬𝑞 ∨ 𝑞 ∨ 𝑝 )

≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑞 ∨ 𝑝

≡ ¬𝑝 ∨ ( 𝑞 ∨ ¬𝑞 ∨ 𝑝)
≡ ¬𝑝 ∨ (T ∨ 𝑝)
≡ ¬𝑝 ∨ (𝑝 ∨ T)
≡ ¬𝑝 ∨ T
≡ T

Law of implication

DeMorgan’s Law

Associative

Associative

Commutative

Negation

Commutative

Domination

Domination



Today

Wrap up digital logic with “standard” ways to read propositions from 
truth tables.

Propositional logic – how do we handle logic with more than one 
“entity”



Canonical Forms

A truth table is a unique representation of a Boolean Function.
If you describe a function, there’s only one possible truth table for it.

Given a truth table you can find many circuits and many compound 
prepositions to represent it.
Think back to when we were developing the law of implication…



Using Our Rules

WOW that was a lot of rules.

Why do we need them? Simplification!

Let’s go back to the “law of implication” example. 

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T

When is the implication true? Just “or” each of the three 

“true” lines!

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
Also seems pretty reasonable

So is 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ (¬𝑝 ∨ 𝑞)
i.e. are these both alternative representations of 𝑝 → 𝑞?



Canonical Forms

A truth table is a unique representation of a Boolean Function.
If you describe a function, there’s only one possible truth table for it.

Given a truth table you can find many circuits and many compound 
prepositions to represent it.
Think back to when we were developing the law of implication…

It would be nice to have a “standard” proposition (or standard circuit) 
we could always write as a starting point.
So we have a (possibly) shorter way of telling if we have the same function.



Disjunctive Normal Form (DNF)

a.k.a. OR of ANDs

a.k.a Sum-of-Products Form

a.k.a. Minterm Expansion

1. Read the true rows of the truth table

2. AND together all the settings in a given (true) row.

3. OR together the true rows.



Disjunctive Normal Form

𝑝 𝑞 𝐺(𝑝, 𝑞)

T T T

T F F

F T T

F F F

1. Read the true rows of the truth table

2. AND together all the settings in a 

given (true) row.

3. OR together the true rows.
𝑝 ∧ 𝑞

¬𝑝 ∧ 𝑞

𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ 𝑞)



Another Canonical Form

DNF is a great way to represent functions that are usually false.
If there are only a few true rows, the representation is short.

What about functions that are usually true?

Well 𝐺 is equivalent to ¬¬𝐺, and ¬𝐺 is a function that is usually false.

Let’s try taking the Disjunctive Normal Form of ¬𝐺 and negating it.



Another Canonical Form

𝑝 𝑞 𝐺(𝑝, 𝑞) ¬𝐺(𝑝, 𝑞)

T T T F

T F F T

F T T F

F F F T

1. Read the true rows of the truth table

2. AND together all the settings in a 

given (true) row.

3. OR together the true rows.
𝑝 ∧ ¬𝑞

¬𝑝 ∧ ¬𝑞

¬𝐺 𝑝, 𝑞 ≡ 𝑝 ∧ ¬𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
𝐺 𝑝, 𝑞 ≡ ¬[ 𝑝 ∧ ¬𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
𝐺 𝑝, 𝑞 ≡ ¬ 𝑝 ∧ ¬𝑞 ∧ ¬ ¬𝑝 ∧ ¬𝑞

𝐺 𝑝, 𝑞 ≡ [ ¬𝑝 ∨ 𝑞 ∧ 𝑝 ∨ 𝑞 ]

This is not in 

Disjunctive 

Normal Form! 

It’s something 

else, though…



Conjunctive Normal Form

a.k.a. AND of ORs

a.k.a. Product-of-Sums Form

a.k.a. Maxterm Expansion

1. Read the false rows of the truth table (of the original function 𝐺)

2. OR together all the settings in the false rows.

3. AND together the false rows.

Or take the DNF of the negation of the function you care about (i.e. of 
¬𝐺), and distribute the negation.



Normal Forms

Don’t simplify any further! Don’t factor anything out (even if you can). 
The point of the canonical form is we know exactly what it looks like, 
you might simplify differently than someone else.

Why? Easier to understand for people.
Inside the parentheses are only ORs between the parentheses are only ANDs (or 
vice versa). 

You’ll use these more in later courses.



Predicate Logic



Predicate Logic

So far our propositions have worked great for fixed objects.

What if we want to say “If 𝑥 > 10 then 𝑥2 > 100.”

𝑥 > 10 isn’t a proposition. Its truth value depends on 𝑥. 

We need a function that can take in a value for 𝑥 and output True or 
False as appropriate.



Predicates

Cat(x):= “x is a cat”

Prime(x) := “x is prime”

LessThan(x,y):= “x<y”

Sum(x,y,z):= “x+y=z”

HasNChars(s,n):= “string s has length n”

Numbers and types of inputs can change. Only requirement is output is 
Boolean.

A function that outputs true or false.

Predicate



Analogy

Propositions were like Boolean variables.

What are predicates? Functions that return Booleans
public boolean pred(…)



Translation

Translation works a lot like when we just had propositions.

Let’s try it…

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2



Domain of Discourse

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2

Can 𝑥 be 4.5? What about “abc” ?

I never intended you to plug 4.5 or “abc” into 𝑥.

When you read the sentence you probably didn’t imagine plugging 
those values in….



Domain of Discourse

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2

To make sure we can’t plug in 4.5 for 𝑥, predicate logic requires 
deciding on the types we’ll allow 

The types of inputs allowed in our predicates.

Domain of Discourse



Try it…

What’s a possible domain of discourse for these lists of predicates?

1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"



Try it…

What’s a possible domain of discourse for these lists of predicates?

1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"

“Mammals”, “pets”, “dogs and cats”, … 

“positive integers”, “integers”, “numbers”, … 

“objects in the university course enrollment system”, “university 

entities”, “students and courses”, … 

More than one domain of discourse might be reasonable…if it might affect the 

meaning of the statement, we specify it. 



Quantifiers

Now that we have variables, let’s really use them…

We tend to use variables for two reasons:

1. The statement is true for every 𝑥, we just want to put a name on it.

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, such that 𝑝(𝑥) and 
𝑞 𝑥 are both true.



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, 𝑝(𝑥) and 𝑞 𝑥 are 
both true.

“∀𝑥“
“for each 𝑥”, “for every 𝑥”, “for all 𝑥” are common translations

Remember: upside-down-A for All.

Universal Quantifier



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, for which 𝑝(𝑥) and 
𝑞 𝑥 are both true.

“∃𝑥“
“there is an 𝑥”, “there exists an 𝑥”, “for some 𝑥” are common translations

Remember: backwards-E for Exists.

Existential Quantifier



Translations

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧ Odd 𝑦 )
Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse311 and login 

with your UW identity

Or text cse311 to 22333



Translations

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧ Odd 𝑦 )

∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

∃𝑥∃𝑦(LessThan 𝑥, 𝑦 )

There is an odd number that is less than 5.

All numbers are both even and odd.



Translations

More practice in section and on homework.

Also a reading on the webpage –
An explanation of why “for any” is not a great way to translate ∀ (even though it 
looks like a good option on the surface)

More information on what happens with multiple quantifiers (we’ll discuss more 
next week).



Evaluating Predicate Logic

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

Is this true?



Evaluating Predicate Logic

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

Is this true?

TRICK QUESTION! It depends on the domain. 

Prime Numbers Positive Integers Odd integers

True False True (vacuously)



One Technical Matter

How do we parse sentences with quantifiers? 
What’s the “order of operations?”

We will usually put parentheses right after the quantifier and variable to 
make it clear what’s included. If we don’t, it’s the rest of the expression.

Be careful with repeated variables…they don’t always mean what you 
think they mean.

∀𝑥 𝑃 𝑥 ∧ ∀𝑥(𝑄 𝑥 ) are different 𝑥’s.



More Practice

Let your domain of discourse be fruits.

There is a fruit that is tasty and ripe.

For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.

∃𝑥(Tasty 𝑥 ∧Ripe 𝑥 )

∀𝑥(¬Ripe 𝑥 → ¬Tasty 𝑥 )

∃𝑥(Sliced 𝑥 ∧ Diced 𝑥 )


