## Warm-up

Let your domain of discourse be integers.
Let $\operatorname{Even}(x):=\exists y(x=2 y)$.

## Even

## An integer $x$ is even if (and only if) there exists an integer $z$, such that $x=2 z$.

Prove "if $x$ is even then $x^{2}$ is even."
Write a symbolic proof (with the extra rules "Definition of Even" and "Algebra").
Then we'll write it in English.

What's the claim in symbolic logic? $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Find The Bug
Let your domain of discourse be integers.
We claim that given $\forall x \exists y \operatorname{Greater}(y, x)$, we can conclude $\exists y \forall x \operatorname{Greater}(y, x)$ Where Greater $(y, x)$ means $y>x$

1. $\forall x \exists y \operatorname{Greater}(y, x)$

## Given

2. Let $a$ be an arbitrary integer --
3. $\exists y \operatorname{Greater}(y, a)$
4. Greater $(b, a)$
5. $\forall x$ Greater $(b, x)$
6. $\exists y \forall x$ Greater $(y, x)$

Elim $\forall$ (1)
Elim $\exists$ (2)
Intro $\forall$ (4)
Intro $\exists$ (5)

## Bug Found

There's one other "hidden" requirement to introduce $\forall$.
"No other variable in the statement can depend on the variable to be generalized"

Think of it like this $--b$ was probably $a+1$ in that example.
You wouldn't have generalized from Greater $(a+1, a)$
To $\forall x$ Greater $(a+1, x)$. There's still an $a$, you'd have replaced all the $a$ 's.
$x$ depends on $y$ if $y$ is in a statement when $x$ is introduced.
This issue is much clearer in English proofs, which we'll start next time.


LOSE THE TRAINING WHEELS

## English Proofs ${ }^{\text {csentraneo }}$ Lecture 9

## Announcements

Please download a new copy of HW3.
We fixed two typos over the weekend.
Two optional readings going up today (maybe tomorrow...).
Another explanation of domain restriction.
An explanation of why mathematicians and computer scientists agreed that vacuous truth was the "right" definition.

We'll link both on this week's section in the calendar.

## Today

We're taking off the training wheels!
Our goal with writing symbolic proofs was to prepare us to write proofs in English.
Let's get started.
The next 3 weeks:
Practice communicating clear arguments to others.
Learn new proof techniques.
Learn fundamental objects (sets, number theory) that will let us talk more easily about computation at the end of the quarter.

## Warm-up

Let your domain of discourse be integers.
Let $\operatorname{Even}(x):=\exists y(x=2 y)$.

## Even

An integer $x$ is even if (and only if) there exists an

## integer $\mathbf{z}$, such that $x=2 z$.

Prove "if $x$ is even then $x^{2}$ is even."
Write a symbolic proof (with the extra rules "Definition of Even" and "Algebra").
Then we'll write it in English.

What's the claim in symbolic logic? $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

## If $x$ is even, then $x^{2}$ is even.

1. Let $a$ be arbitrary
2.1 Even ( $a$ )
$2.2 \exists y(2 y=a)$
$2.32 z=a$
$2.4 a^{2}=4 z^{2}$
$2.5 a^{2}=2 \cdot 2 z^{2}$
$2.6 \exists w\left(2 w=a^{2}\right)$
2.7 Even $\left(a^{2}\right)$
2. Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption

Definition of Even (2.1)
Elim $\exists$ (2.2)
Algebra (2.3)
Alegbra (2.4)
Intro $\exists$ (2.5)
Definition of Even
Direct Proof Rule (2.1-2.7)
Intro $\forall$ (3)

## If $x$ is even, then $x^{2}$ is even.

1. Let $a$ be arbitrary
2.1 Even (a)
$2.2 \exists y(2 y=a)$
$2.32 z=a$
$2.4 a^{2}=4 z^{2}$
$2.5 a^{2}=2 \cdot 2 z^{2}$
$2.6 \exists w\left(2 w=a^{2}\right)$
2.7 Even $\left(a^{2}\right)$
2. Even $(a) \rightarrow \operatorname{Even}\left(a^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$ Intro $\forall(3)$

Assumption

Elim $\exists$ (2.2)
Algebra (2.3)
Alegbra (2.4)
Intro $\exists$ (2.5)

Definition of Even (2.1)

Definition of Even
Direct Proof Rule (2.1-2.7) even.
Since $x$ was an arbitrary even integer, we can conclude that for every even $x$, $x^{2}$ is also even.

## Converting to English

Start by introducing your assumptions. Introduce variables with "let." Introduce assumptions with "suppose."
Always state what type your variable is. English proofs don't have an established domain of discourse.
Don't just use "algebra" explain what's going on. We don't explicitly intro/elim $\exists / \forall$ so we end up with fewer "dummy variables"

Let $x$ be an arbitrary even integer.
By definition, there is an integer $y$ such that $2 y=x$.

Squaring both sides, we see that $x^{2}=$ $4 y^{2}=2 \cdot 2 y^{2}$.

Because $y$ is an integer, $2 y^{2}$ is also an integer, and $x^{2}$ is two times an integer. Thus $x^{2}$ is even by the definition of even.
Since $x$ was an arbitrary even integer, we can conclude that for every even $x$, $x^{2}$ is also even.

## Let's do another!

## First a definition

## Rational

A real number $x$ is rational if (and only if) there exist integers $p$ and $q$, with $q \neq 0$ such that $x=p / q$.

$$
\text { Rational }(x):=\exists p \exists q(\text { Integer }(p) \wedge \operatorname{Integer}(q) \wedge(x=p / q) \wedge q \neq 0)
$$

## Let's do another!

"The product of two rational numbers is rational."

What is this statement in predicate logic?

$$
\begin{aligned}
& \forall x \forall y([\text { rational }(x) \wedge \text { rational }(y)] \rightarrow \text { rational }(x y)) \\
& \text { Remember unquantified variables in English are implicitly } \\
& \text { universally quantified. }
\end{aligned}
$$

## Doing a Proof

$\forall x \forall y([$ rational $(x) \wedge$ rational $(y)] \rightarrow$ rational $(x y))$
"The product of two rational numbers is rational."

DON'T just jump right in!
Look at the statement, make sure you know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

## Let's do another!

"The product of two rational numbers is rational."
Let $x, y$ be arbitrary rational numbers.

Therefore, $x y$ is rational.
Since $x$ and $y$ were arbitrary, we can conclude the product of two rational numbers is rational.

## Let's do another!

"The product of two rational numbers is rational."
Let $x, y$ be arbitrary rational numbers.
By the definition of rational, $x=a / b, y=c / d$ for integers $a, b, c, d$ where $b \neq 0$ and $d \neq 0$.
Multiplying, $x y=\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$.
Since integers are closed under multiplication, $a c$ and $b d$ are integers.
Moreover, $b d \neq 0$ because neither $b$ nor $d$ is 0 . Thus $x y$ is rational. Since $x$ and $y$ were arbitrary, we can conclude the product of two rational numbers is rational.

## Now You Try

The sum of two even numbers is even.

1. Write the statement in predicate logic.
2. Write an English proof.
3. If you have lots of extra time, try writing the symbolic proof instead.

## Now You Try

The sum of two even numbers is even.

Make sure you know:

1. What every word in the statement means.
2. What the statement as a whole means.

## Even

## An integer $x$ is even if (and only if) there exists an integer $z$, such that $x=2 z$.

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/cse311 and login with your UW identity Or text cse311 to 22333
3. Where to start.

1. Write the statement in predicate logic.
2. Write an English proof.
3. If you have lots of extra time, try writing the symbolic proof instead.

## Here's What I got.

$\forall x \forall y([\operatorname{Even}(x) \wedge \operatorname{Even}(y)] \rightarrow \operatorname{Even}(x+y))$

Let $x, y$ be arbitrary integers, and suppose $x$ and $y$ are even.
By the definition of even, $x=2 a, y=2 b$ for some integers $a$ and $b$.
Summing the equations, $x+y=2 a+2 b=2(a+b)$.
Since $a$ and $b$ are integers, $a+b$ is an integer, so $x+y$ is even by the definition of even.
Since $x, y$ were arbitrary, we can conclude the sum of two even integers is even.

## Why English Proofs?

Those symbolic proofs seemed pretty nice. Computers understand them, and can check them.

So what's up with these English proofs?

They're far easier for people to understand.
But instead of a computer checking them, now a human is checking them.
$\beta$ Sets

## Set

A set is an unordered group of distinct elements.
We'll always write a set as a list of its elements inside \{curly, brackets\}.
Variable names are capital letters, with lower-case letters for elements.

$$
\begin{aligned}
& A=\{\text { curly, brackets }\} \\
& B=\{0,5,8,10\}=\{5,0,8,10\}=\{0,0,5,8,10\} \\
& C=\{0,1,2,3,4, \ldots\}
\end{aligned}
$$

## Sets

Some more symbols:
$a \in A$ ( $a$ is in $A$ or $a$ is an element of $A$ ) means $a$ is one of the members of the set.
For $B=\{0,5,8,10\}, \quad 0 \in B$.
$A \subseteq B(A$ is a subset of $B)$ means every element of $A$ is also in $B$.
For $A=\{1,2\}, B=\{1,2,3\} A \subseteq B$

## Sets

Be careful about these two operations:
If $A=\{1,2,3,4,5\}$
$\{1\} \subseteq A$, but $\{1\} \notin A$
$\in$ asks: is this item in that box?
$\subseteq$ asks: is everything in this box also in that box?

Try it!
Let $A=\{1,2,3,4,5\}$
$B=\{1,2,5\}$

Is $A \subseteq A$ ?
Is $B \subseteq A$ ?
Is $A \subseteq B$ ?
Is $\{1\} \in A$ ?
Is $1 \in A$ ?

