

Don't just read it; fight it!


## Announcements

Lots of folks sounded concerned about English proofs in sections. THAT'S NORMAL

English proofs aren't easy the first few times (or the next few times...sometimes not even after a decade...)

Keep asking questions!
Don't expect breakout room activities to be "easy." If you know the right answer immediately, you won't learn much by doing it.

## Last Time

Went reaaaaaaaaaaaal fast...so we could practice proofs in section and slowly today.

We'll keep practicing in the background.

## Two More Set Operations

Given a set, let's talk about it's powerset.
$\mathcal{P}(A)=\{\mathrm{X}: \mathrm{X}$ is a subset of $A\}$
The powerset of $A$ is the set of all subsets of $A$.
$\mathcal{P}(\{1,2\})=\{\varnothing,\{1\},\{2\},\{1,2\}\}$

## Two More Set Operations

$$
\frac{A \times B}{\text { nT }}=\{(\underbrace{}_{\text {the set af all adunel pairs of } A \text { and } B}
$$

Called "the Cartesian product" of $A$ and $B$.
$\mathbb{R} \times \mathbb{R}$ is the "real plane" ordered pairs of real numbers. $(x, f(x))$

$$
\begin{aligned}
& \frac{\{1,2\} \times\{1,2,3\}}{A \times B \times C}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\} \\
& =\{(a, b, c): a \in A \wedge b \in B \wedge \subset \in C\}
\end{aligned}
$$

## Divides

## Divides

## For integers $x, y$ we say $x \mid y$ (" $x$ divides $y$ ") iff

 there is an integer $z$ such that $x z=y$.Which of these are true?

$$
\begin{gathered}
2 \mid 4 \sqrt{ } \\
2 \cdot 2=Y \\
510 \mathrm{~V} \\
5 \cdot 0=0
\end{gathered}
$$

$$
0=<5
$$

$$
\begin{aligned}
& 2 \mid-2 \\
& 2 \cdot 1=-2 \\
& 1 \mid 5 \mathrm{~J} \\
& 1 \cdot 5=5
\end{aligned}
$$

## Why Number Theory?

Applicable in Computer Science
"hash functions" (you'll see them in 332) commonly use modular arithmetic Much of classical cryptography is based on prime numbers.

More importantly, a great playground for writing English proofs.

## A useful theorem

$$
\left.P^{\prime \prime} \text { is anclomet of }{ }^{\text {integers }}, \ldots,-2,-1,0,1,2, \ldots\right\}
$$

The Division Theorem

## For every $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$

There exist unique integers $q, r$ with $0 \leq r<d$

Remember when non integers were still secret, you did division like this?

$q$ is the "quotient"
$r$ is the "remainder"

## Unique

## The Division Theorem

## For every $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$ <br> There exist unique integers $q, r$ with $0 \leq r<d$ Such that $a=d q+r$

"unique" means "only one"....but be careful with how this word is used.
$r$ is unique, given $a, d$. - it still depends on $a, d$ but once you've chosen $a$ and $d$
"unique" is not saying $\exists r$ ra, $P(a, d, r)$
It's saying $\forall a, d \exists r[P(a, a, r) \cdots P(a, a, x) \rightarrow x=r]]$

## A useful theorem

## The Division Theorem

## For every $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>0$

There exist unique integers $q, r$ with $0 \leq r<d$ Such that $a=d q+r$

The $\underline{q}$ is the result of a/d (integer division) in Java
The $r$ is the result of $a \% d$ in Java
That's slightly a lie, $r$ is always nonnegative, Java's \% operator sometimes gives a negative number.

## Terminology

You might have called the \% operator in Java "mod"

We're going to use the word "mod" to mean a closely related, but different thing.

Java's $\underline{\%}$ is an operator (like + or $\cdot$ ) you give it two numbers, it produces a number.

The word "mod" in this class, refers to a set of rules

## Modular arithmetic

"arithmetic mod 12 " is familiar to you. You do it with clocks.

What's 3 hours after 10 o'clock?
1 o'clock. You hit 12 and then "wrapped around"
"13 and 1 are the same, $\bmod 12$ " "-11 and 1 are the same, $\bmod 12 "$

We don't just want to do math for clocks - what about if we need a different number of "hours"?

## Modular Arithmetic

To say "the same" we don't want to use = ... that means the normal =

We'll write $13 \equiv 1(\bmod 12)$
三because "equivalent" is "like equal," and the "modulus" we're using in parentheses at the end so we don't forget it.

Modular arithmetic
We need a definition! We can't just say "it's like a clock"
Pause what do you expect the definition to be? $\quad a \equiv b(\bmod n)$
Is it related to \% ?

$$
a \% n=b>n
$$

## Modular arithmetic

We need a definition! We can't just say "it's like a clock"

Pause what do you expect the definition to be?

## Equivalence in modular arithmetic

$$
\begin{aligned}
& \text { Let } a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z} \text { and } n>0 . \\
& \text { We say } a \equiv b(\bmod n) \text { if and only if } n \mid(b-a)
\end{aligned}
$$

## Huh?

## Long Pause

It's easy to read something with a bunch of symbols and say "yep, those are symbols." and keep going
sTOP Go Back.

You have to fight the symbols they're probably trying to pull a fast one on you.
Same goes for when I'm presenting a proof - you shouldn't just believe me - I'm wrong all the time!
You should be trying to do the proof with me. Where do you think we're going next?

## So, why?

## Equivalence in modular arithmetic

> Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
> We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

What does it mean to be "the same in clock math" If I divide by 12 then I get the same remainder.

## Another try

$$
a^{2} / \sigma_{n}=b \neq h
$$

Equivalence in modular arithmetic (correct, but bad)

## Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.

We say $a \equiv b(\bmod n)$ if and only if the $r$ guaranteed by the division theorem is equal for $a / n$ and $b / n$


The Division Theorem
For every $a \in \mathbb{Z}, a \in \mathbb{Z}$, with $d>0$
There exist unique integers $q, r$ with $0 \leq r<d$
Such that $a=d q+r$
$\frac{\Delta}{d}=q$ minvem. $r$

## Another Try

## Equivalence in modular arithmetic (correct, but bad)

## Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.

We say $a \equiv b(\bmod n)$ if and only if the $r$ guaranteed by the division theorem is equal for $a / n$ and $b / n$

This is a perfectly good definition. No one uses it.
Let's say you want to prove $a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$
So, uhh, who wants to divider $+c$ byomand figure out/what the remainder is?


## Once More, with feeling

## Equivalence in modular arithmetic (correct, but bad)

## Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.

We say $a \equiv b(\bmod n)$ if and only if the $r$ guaranteed by the division theorem is equal for $a / n$ and $b / n$

How do humans check if numbers are equivalent?
You subtract 12 as soon as the number gets too big, and make sure you end up with the same number (ie. $r$ )
So $a$ is $r+12 k$ for some integer $k$ and $b$ is $r+12 j$ for some integer $j$ So $\mathrm{b}-a=\kappa+12 j-(k+12 k)=12(j-k)$


## Now I see it

## Equivalence in modular arithmetic

## Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$. We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

So, is it actually better?
Prove for all $a, b, c, n \in \mathbb{Z}, n \geq 0: a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$

Claim: for all $\underbrace{a, b, c, n \in \mathbb{Z}, n \geq 0: a \equiv b(\bmod n)} \rightarrow a+c \equiv b+c(\underbrace{(\bmod n)}$
Before we start, we must know:

1. What every word in the statement means $ل$
2. What the statement as a whole means. $\sqrt{ }$
3. Where to start.
4. What your target is.

## Divides

For integers $x, y$ we say $x \mid y$ (" $x$ divides $y$ ") iff there is an integer $z$ such that $x z=y$.

Equivalence in modular arithmetic
Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$. We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

Claim: $a, b, c, n \in \mathbb{Z}, n \geq 0: a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$ Proof:
Let $a, b, c, n$ be arbitrary integers with $n \geq 0, \quad a+c$ = $n$ and suppose $a \equiv b(\bmod n)$.
$n \mid(b-a)$
$n k=b-a, k \in \mathbb{Z}$. Divides
For integers $x, y$ we say $x \mid y$ (" $x$ divides $y$ ") iff there is an integer $z$ such that $x Z=y$.
$([\square+c]-[a+c])$
$\underbrace{a+c} \bar{\equiv} b+c_{a}(\bmod n)$
Equivalence in modular arithmetic
Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$. We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

## A proof

Claim: $a, b, c, n \in \mathbb{Z}, n \geq 0: a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$ Proof:

Let $a, b, c, n$ be arbitrary integers with $n>0$, and suppose $a \equiv b(\bmod n)$.
By definition of mod, $\mathrm{n} \mid(b-a)$
By definition of divides, $n k=(b-a)$ for some integer $k$.
Adding, and subtracting $c$, we have $n k=([b+c]-[a+c])$.
Since $k$ is an integer $n \mid([b+c]-[a+c])$
By definition of mod, $a+c \equiv b+c(\bmod n)$

## You Try!

Claim: for all $a, b, c, n \in \mathbb{Z}, n>0$ : If $a \equiv b(\bmod n)$ then $a c \equiv b c(\bmod n)$
Before we start we must know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

## Divides

For integers $x, y$ we say $x \mid y$ (" $x$ divides $y^{\prime \prime}$ ) iff there is an integer $z$ such that $x z=y$.

## Equivalence in modular arithmetic

Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

Claim: for all $a, b, c, n \in \mathbb{Z}, n>0$ : If $a \equiv b(\bmod n)$ then $a c \equiv b c(\bmod n)$ Proof:

Let $a, b, c, n$ be arbitrary integers with $n>0$ and suppose $a \equiv b(\bmod n)$.


Claim: for all $a, b, c, n \in \mathbb{Z}, n>0$ : If $a \equiv b(\bmod n)$ then $a c \equiv b c(\bmod n)$ Proof:

Let $a, b, c, n$ be arbitrary integers with $n>0$ and suppose $a \equiv b(\bmod n)$.
By definition of $\bmod n \mid(b-a)$
By definition of divides, $n k=b-a$ for some integer $k$
Multiplying both sides by $c$, we have $n(c k)=b c-a c$.
Since $c$ and $k$ are integers, $n \mid(b c-a c)$ by definition of divides.
So, $a c \equiv b c(\bmod n)$, by the definition of $\bmod$.

## Don't lose your intuition!

Let's check that we understand "intuitively" what mod means:

$$
\begin{aligned}
& x \equiv 0(\bmod 2) \\
& \quad \text { " } x \text { is even" Note that negative (even) } x \text { values also make this true. } \\
& -1 \equiv 19(\bmod 5) \\
& \quad \text { This is true! They both have remainder } 4 \text { when divided by } 5 \text {. } \\
& y \equiv 2(\bmod 7)
\end{aligned}
$$

This is true as long as $y=2+7 k$ for some integer $k$

