T HAVE NOTHING TO DO, SO0 ITM TRYING
TO CALCULATE THE PRIME FACTORS OF THE
TIME EACH MINUTE BEFORE IT CHANGES.

[
ITWASERSY WHIN I N
STARTED AT 1:00, BUT
WITH EACH HOUR THE

NUMBER GETS BIGGER
!

I WONDER HOW

LONG I CAN KEEP UP.

1M FACTORING Y&,
THE TME.

(53 Gen
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Extra Set Practice

ShowAUu(BNnC)=(AUB)N (AU ()

Proof:

Firse, we'll show: AU(BNC) S (AUB)N(AUC(C)
Let x be an arbitrary element ofA U (B N C).
Then by definition of U,n we have:
XEAV(x€EBAx€EC(D)

Applying the distributive law, we get
(xeAVxEB)A(x€EAVXxECD)

Applying the definition of union, we have:
x€(AUB)andx € (AU )
By definition of intersection we have x € (AU B) N (AU C).
SOAU(BNC)S(AUB)N(AUC).

Now we show (AUB)N(AUC) S AU(BNC(C)

Let x be an arbitrary element of (AU B) N (AU C).

By definition of intersection and union, (x EAVx € B)A(x EAVx €C)

Applying the distributive law, we have x e AV (x € BAx € ()

Applying the definitions of union and intersection, we have x € AU (B N C)

So(AUB)N(AuC)<c AUu(BnC().

Combining the two directions, since both sets are subsets of each other, we have AU(BNC) =(AUB)N (AU ()



Extra Set Practice

Suppose A € B. Show that P(A) € P(B).
Let A, B be arbitrary sets such that A € B.
Let X be an arbitrary element of P(A4).

By definition of powerset, X € A.

Since X € A, every element of X is also in A. And since A € B, we also
have that every element of X is also in B.

Thus X € P(B) by definition of powerset.

Since an arbitrary element of P(A4) is also in P(B), we have P(A) <
P(B).



Extra Set Practice

Disprove: If A € (B U () thenA\g/B_o\rEg
——————<

5Consider A=1{1,23}B ={1,2},C = {3,4}

BUC ={1,2,3,4} so we do have 55_ B, but ég\Ba/niAf;t_-)C.
A<@BUC)

When you disprove a Vv, you're just prowdlng a counterexample (you're
showing 3) — your proof vvon 't have “let x be an arbitrary element of A.”

6( 7—
3;&&) B~¢2n2 ?m é%fgzg_

DKXE AD &




Facts about modular arithmetic

For all integers a, b, c,d,n where n > 0:

If a = b(mod n) and ¢ = d(mod n) then a + ¢ = b + d(mod n).
It a = b(mod n) and ¢ = d(mod n) then ac = bd (mod n).

a = b(mod n) if and only if b = a (mod n).

a%n = (a — n)%n,
W

We didn’t prove the first, it's a good exercise! You can use it as a fact as
though we had proven it in class.



Another Proof

-or all integers, a, b, c: Show that ifa t (bc) thenatboratc.
\_/S’_’/
Proof:

et a, b, c be arbitrary integers, and suppose a t (bc).
Then there is not an integer z such that az = bc QJ

V—z:ZZ T Az 7\[{0\;/ L5

-S:5

There is not an integer x such that ax = b, or there is not an integer y
such that ay = c. —

Soatboratc



Another Proof

-or all integers, a, b, gins

Proof:

et a, b, c be arbitrar
Then there is not an

\ A

Hiere has fo be a befter way!



Another Proof

For all int , a, b, c: Show that if bc) thena t b .
or all integers, a, b, c: Show a|\a£(_/c) c

There has to be a better way!

It only there were some equivalent implication...

One where we could negate everything...

Take the contrapositive of the statement:

For all integers, a, b, c: Show if a|b @a|c then a|(bc).
_ _— N



By contrapositive

P o> %
Claim: For all integers, a, b, c: Show that if a { (bc) thena +t b or a t c.

[SWe argue by contrapositive. gD f>
Let a, b, c be arbitrary integers, and suppose a|b arfﬁdc.

S~ e

Therefore a|bc
——



By contrapositive

Claim: For all integers, a, b, c: Show that if a 4 (bc) thena +t b ora t c.
We argue by contrapositive.

Let a, b, c be arbitrary integers, and suppose a|b and a|c.

By definition of divides, ax = b and ay = c for integers x and y.
Multiplying the two equations, we get axay = bc

Since a, x,y are all integers, xay is an integer. Applying the definition of
divides, we have albc.

So for all integers a,b,c ifa t (bc) thenatboratc.



Try it yourselves!

Show for any sets A,B,C:if A€ (BUC) thenA £ C.

1. What do the terms in the statement mean?
2. What does the statement as a whole say?
3. Where do you start?

4. What's your target?

Fill out the poll everywhere for

5. Finish the proof © Activity Credit!

Go to pollev.com/cse311 and login
with your UW identity
Or text cse311 to 22333




Try it yourselves!

Sh%;vgo\rv?ny sets A, B, C: ;A Z(BUuC)thenA £ C.
B C (BUC)— A& C
VAVR dC Q\éﬁgcg% — A ¢Bo>65
Proof: < A%C—- =\ Aé%\@UC—) )

We argue by contrapositive,

Let A, B, C be arbitrary sets, and suppose 4 € C.

Let x be an arbitrary element of A. By definition of subset, x € C. By
definition of union, we also have x € B U C. Since x was an arbitrary
element of 4, we have A € (B U C).

TTTe—

Since A, B, C were arbitrary, we have: it A € (BU C) then A £ C.




‘ Divisors and Primes



Primes and FTA

Prime

An integer p > 1 is prime iff its only positive divisors are 1
and p. Otherwise it is “composite”

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique
prime factorization.




GCD and LCM

Greatest Common Divisor

The Greatest Common Divisor of a and b (gcd(a,b)) is the
largest integer ¢ such that c|a and c|b

\J
R/

N

Least Common Multiple

The Least Common Multiple of a and b (Icm(a,b)) is the
smallest positive integer ¢ such that a|c and b|c.

Vo
"/



Try a few values...

gcd(100,125) =25
gcd(17,49) = )
gcd(17,34)= )7

gcd(13,0) =2 (5O
[22=0
2

lcm(7,11) =22

I S

lcm(6,10)= 20

’



1f (m<n) {
int temp = m;
m=n;
n=temp;

}

while(n !'= 0) {
int rem = m %
m=n;
n=rem;

}

return m;

public int Mystery(int m, 1nt



How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.
gcd@r,&(_)):gcd@é,@) =2Mmin(2,3)} = 2”2 = 4

(lcm has a similar algorithm — take the maximum number of copies of
everything)

But that's....really expensive. Mystery from a few slides ago finds gcd.
< ——



Two useful facts

gcd Fact 1

If a, b are positive integers, then gcd(a. b) = gcd(b, a%b)

Tomorrow’s lecture we'll prove this fact. For now: just trust it.

gcd Fact 2

Let a be a positive integer: gcd(a,0) = a

Does a|a and cﬂg? Yesa-1=a;a-0= gO
Does anythmg greater than a divide a? b2 Lla %ﬁ\



public int Mystery(int m, 1nt n) {

1f (m<n) {
int temp = m;
m=n;
} n=temp; O/\QX<V“\)VB)
while(n != 0) { JQw/m%n)
“’ffﬂnt rem = m % nj;
_,f§m=n;
=Ty VY ] gaim0)
| NP

return m;
=



while(n != 0) {

Euclid’s Algorithm
%d Lé)\os /-»(a,f)UG/Q \/ n=temp;

9cd(660,126) = Gl (14, 660Fdl26) = %Q&(@S/ 20
= A3 L% 39)= Gl )
B SCT

W@EA ')%YD"‘Q
- ¥ B0

36'= 4 300, >

30= 5{6) O




Euclid’s Algorithm

gcd(660,126) = gcc
= gCO
= gcd

=6

Tableau form

660 =5-126 |+ 30

126 =4- 30 +(6)

30 =5-

6 +

0

(126, 660 mod 126)
(30, 126 mod 30)

(6, 30 mod 6)

Starting Numbers

while (n

}

= gcd(126, 30)

= gCo

(30, 0)

= gCa

(6, 0)

'= 0)

int rem = m % n;
m=n;
n=temp;



Bezout's Theorem

Bézout’s Theorem
If a and b are positive integers, then there exist integers s

and t such that
gcd(a,b)= sa + tb

We're not going to prove this theorem...

But we'll show you how to find s,t for any positive integers a, b.



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27)



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27) = gcd(27, 35%27)
= gcd(8, 27%8)

= gcd
= gcd
= gcd

(
(
(
(1,

3, 8%3)
2, 3%2)
2%1)

M V)

35=1-27 +8
27=3- 8 +3
8 =2- 3 +2
3 =1- 2 +1

—L




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

M EN v
35=1-27 +8
27=3- 8 +3

8 =2- 3 +2
3 =1- 2 +1




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

M 4 N S W 0
35=1-27 +38 8 =35 — 127
27=3- 8 H3) 3=27 -3 8
8 =2- 3 +2 2 =8 — 2- 3
3 =1- 2 +1 1 =3—-1-2

&/‘



Step 1 compute gcd(a,b); keep tableau mf %ﬁgt@f\&?
Step 2 solve all equations for the remainger

St . -~ 3 —| X*Q«}
ep 3 substitute backward ——
st grdle) =socrtio
) Cépm o~ a(-é"(“é\
=3—=)-(8-23)
7 =128 40y
R e CE RS

S
I S el
,.:(g,@gqoﬁ—)—f%l#
= (3 27 =\3-35




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

1=3-1-2
8=35—1-27 =3-1-8-2:3)
3=27 —3- 8 Sohetes




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

3=27—-3- 8
2 =8 — 2- 3
1 =3 -1 2

gcd(27,35) = 13- 27 + (—10) - 35

1=3-1-2
=3-1-(8-2-3)
~1-8+3-3
~1-8+3(27—3-8)
=3.27-10-8
=3.27-10(35—1-27)
=13-.27—-10-35

When substituting
back, you keep
the larger of m, n
and the number
you just
substituted.

Don’t simplify
further! (or you
lose the form you
need)



So..what's 1t good for?

Suppose | want to solve 7x = 1(mod n) %'* Z 5 () "\J
M
N = S(\N\a?& nJ

Just multiply both sides by % X = é(m@\ v\/
\ ———
Oh wait. We want a number to multiply by 7 to get 1.

Gl
If the gcd(7,n) = 1 =~

Thens-7+tn=1,s07s —1=—tnie n|(7s —1) so j@ = 1(mod n).
So the s from Bezout's Theorem is what we should multiply by!

\ﬁ&é‘g M sl 2 Olmd )



Try 1t

Solve the equation, y

What do we need to find?
The multiplicative inverse of 7(mod 26)

§¢d (26 2)



Finding the inverse...

= gcd(5, 7%5) = gcd(5,2)
= gcd(2, 5%2) = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26=3-745;5=26 —3-7
7=5-142;2=7 - 5-1
5=2.-241;1=5— 2-2

1=5—2-2
=5-2(7=5-1)
=3.5-2-7
=3-(26—-3-7)—2-7

3.26—11-7
| N

—11 is a multiplicative inverse.
We’'ll write it as 15, since we're working mod 26.



Try 1t
Solve the equation 7y = 3(mod 26)

What do we need to find?
The multiplicative inverse of 7 (mod 26).

15-7-y=15-3(mod 26)

y = 45(mod 26)

Or y = 19(mod 26)

S026|19—vy,ie. 26k=19—y (forke€Z)ie.y=19—-26-kforanyk € Z
So {...,—7,19,45, ...19 + 26k, ...}



I~ And now, for some proofs!



GCD fact

It a and b are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?
Call a = ged(w, x), b = gcd(y, z)

f blw and b|x then b is a common divisor of w,x so b < a
faly and a|z then a is a common divisor of y,z,soa < b
fa<bandb <athena=5»




gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that y is a common divisor of a and b.
By definition of gcd, y|b and y|(a%b). So it is enough to show that y]a.

Applying the definition of divides we get b = yk for an integer k, and
(a%b) = yj for an integer j.

By definition of mod, a%b is a = gb + (a%b) for an integer q.
Plugging in both of our other equations:

a = qyk + yj = y(qgk + j).Since q,k, and j are integers, y|a. Thus y is a
common divisor of a, b and thus y < x.




gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.
By definition of gcd, x|b and x|a. So it is enough to show that x|(a%b).

Applying the definition of divides we get b = xk' for an integer k', and
a = xj' for an integer j'.

By definition of mod, a%b is a = gb + (a%b) for an integer q
Plugging in both of our other equations:

xj' = qxk’ + a%b. Solving for a%b, we have a%b = xj' — qxk’ =
x(j" — qk"). So x|(a%b). Thus x is a common divisor of b, a%b and thus
X=<Yy.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.

We have shown x < yand y < x.
Thus x =y, and gcd(a, b) = gcd(b, a%b) .



