
xkcd.com/247

GCD and the
SSE 311 Fall 2020 Lecture 13

Extra Set Practice

Show $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Proof:
Firse, we'll show: $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$
Let x be an arbitrary element of $A \cup(B \cap C)$.
Then by definition of U, \cap we have:
$x \in A \vee(x \in B \wedge x \in C)$
Applying the distributive law, we get
$(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$
Applying the definition of union, we have:
$x \in(A \cup B)$ and $x \in(A \cup C)$
By definition of intersection we have $x \in(A \cup B) \cap(A \cup C)$.
So $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$.
Now we show $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$
Let x be an arbitrary element of $(A \cup B) \cap(A \cup C)$.
By definition of intersection and union, $(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$
Applying the distributive law, we have $x \in A \vee(x \in B \wedge x \in C)$
Applying the definitions of union and intersection, we have $x \in A \cup(B \cap C)$
So $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$.
Combining the two directions, since both sets are subsets of each other, we have $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Extra Set Practice

Suppose $A \subseteq B$. Show that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
Let $A, \mathrm{~B}$ be arbitrary sets such that $A \subseteq B$.
Let X be an arbitrary element of $\mathcal{P}(A)$.
By definition of powerset, $X \subseteq A$.
Since $X \subseteq A$, every element of X is also in A. And since $A \subseteq B$, we also have that every element of X is also in B.
Thus $X \in \mathcal{P}(B)$ by definition of powerset.
Since an arbitrary element of $\mathcal{P}(A)$ is also in $\mathcal{P}(B)$, we have $\mathcal{P}(A) \subseteq$ $\mathcal{P}(B)$.

Extra Set Practice
Disprove: If $A \subseteq(B \cup C)$ then $A \subseteq B$ or $A \subseteq \mathcal{C}$
$\left\{\begin{array}{l}\text { Consider } A=\{1,2,3\}, B=\{1,2\}, C=\{3,4\} . \\ B \underline{\cup C=\{1,2,3,4\}} \text { so we do have } \widehat{A \subseteq B,} \text {, but } A \nsubseteq B \text { and } A \nsubseteq \mathcal{C}\end{array}\right.$.

$$
\overrightarrow{A \subseteq(B \cup C)}
$$

When you disprove a \forall, you're just providing a counterexample (you're showing \exists) - your proof wont have "let x be an arbitrary element of A."

$$
P(A n)=A=\{
$$

Facts about modular arithmetic

For all integers a, b, c, d, n where $n>0$:

$$
\left\{\begin{array}{l}
\text { If } a \equiv b(\bmod n) \text { and } c \equiv d(\bmod n) \text { then } a+c \equiv b+d(\bmod n) . \\
\frac{\text { If } a \equiv b(\bmod n) \text { and } c \equiv d(\bmod n) \text { then } a c \equiv b d(\bmod n) .}{\underline{a} \equiv b(\bmod n) \text { if and only if } b \equiv a(\bmod n) .} \\
\underline{a \% n=(a-n) \% n .}
\end{array}\right.
$$

We didn't prove the first, it's a good exercise! You can use it as a fact as though we had proven it in class.

Another Proof

For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$. Proof:

Let a, b, c be arbitrary integers, and suppose $a \nmid(b c)$.
Then there is not an integer z such that $a z=b c$

$$
\forall z \neq \mathbb{Z}: \quad a z \neq b c
$$

$$
\begin{aligned}
5 & =-1 \\
-1 & \neq 5 \\
-5 & =5
\end{aligned}
$$

There is not an integer x such that $a x=b$, or there is not an integer y such that $a y=c$.
So $a \nmid b$ or $a \nmid c$

Another Proof

For all integers, a, b, Conewthat if n f (ha) thon $a \nmid b$ or $a \nmid c$. Proof:

Let a, b, c be arbitrar
Then there is not an

TTh keptethas fo be a better way!

Another Proof

For all integers, a, b, c : Show that if $\underbrace{a \nmid(b c)}$ then $a \nmid b$ Or $a \nmid c$.
There has to be a better way!
If only there were some equivalent implication...
One where we could negate everything...

Take the contrapositive of the statement:
For all integers, a, b, c : Show if $a \mid b$ and) $a \mid c$ then $a \mid(b c)$.

By contrapositive

Claim: For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.
\checkmark We argue by contrapositive.

Let a, b, c be arbitrary integers, and suppose $a \mid b$ and $a \mid c$.

Therefore $a \mid b c$

By contrapositive

Claim: For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.
We argue by contrapositive.
Let a, b, c be arbitrary integers, and suppose $a \mid b$ and $a \mid c$.
By definition of divides, $a x=b$ and $a y=c$ for integers x and y.
Multiplying the two equations, we get $a x a y=b c$
Since a, x, y are all integers, xay is an integer. Applying the definition of divides, we have $a \mid b c$.
So for all integers a, b, c if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.

Try it yourselves!

Show for any sets A, B, C : if $A \nsubseteq(B \cup C)$ then $A \nsubseteq C$.

1. What do the terms in the statement mean?
2. What does the statement as a whole say?
3. Where do you start?
4. What's your target?
5. Finish the proof $:$

Fill out the poll everywhere for
Activity Credit!

Go to pollev.com/cse311 and login with your UW identity
Or text cse311 to 22333

Try it yourselves!

Show for any sets A, B, C : if $A \nsubseteq(B \cup C)$ then $A \nsubseteq C$.

We argue by contrapositive,
Let A, B, C be arbitrary sets, and suppose $A \subseteq C$.
Let x be an arbitrary element of A. By definition of subset, $x \in C$. By definition of union, we also have $x \in B \cup C$. Since x was an arbitrary element of A, we have $A \subseteq(B \cup C)$.
Since A, B, C were arbitrary, we have: if $A \nsubseteq(B \cup C)$ then $A \nsubseteq C$.

Divisors and Primes

Primes and FTA

Prime

An integer $p>1$ is prime iff its only positive divisors are 1 and p. Otherwise it is "composite"

Fundamental Theorem of Arithmetic
Every positive integer greater than 1 has a unique prime factorization.

$$
35=5.7 \quad 50=2.5^{2}
$$

GCD and LCM

Greatest Common Divisor

The Greatest Common Divisor of a and $b(\operatorname{gcd}(\mathrm{a}, \mathrm{b}))$ is the largest integer c such that $c \mid a$ and $c \mid b$

$$
\frac{6}{12} \operatorname{gct}(6,12)=6=\frac{1}{2}
$$

Least Common Multiple

The Least Common Multiple of a and $b(\operatorname{lcm}(a, b))$ is the smallest positive integer c such that $a \mid c$ and $b \mid c$.

$$
\frac{1}{2}+\frac{2}{3}=\frac{3}{6}+\frac{4}{6}=\frac{7}{6}
$$

Try a few values...

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\operatorname{gcd}(100,125)=25 \\
\operatorname{gcd}(17, \underline{49})=1 \\
\operatorname{gcd}(17,34)=17 \\
\underline{\operatorname{gcd}(13,0)}=13
\end{array}\right. \\
\begin{array}{ll}
\operatorname{lcm}(7,11)=77 & |3| 0
\end{array} \\
\operatorname{lcm}(6,10)=30
\end{array}\right.
$$

```
public int Mystery(int m, int n){
    if (m<n) {
        int temp = m;
        m=n;
        n=temp;
    }
    while(n != 0) {
    int rem = m % n;
    m=n;
    n=rem;
}
    return m;
}
```


How do you calculate a gcd?

You could:
Find the prime factorization of each
Take all the common ones. E.g.
$\operatorname{gcd}(24,20)=\operatorname{gcd}\left(2^{3} \cdot 3,2^{2} \cdot 5\right)=2^{\wedge}\{\min (2,3)\}=2^{\wedge} 2=4$.
(lcm has a similar algorithm - take the maximum number of copies of everything)

But that's....really expensive. Mystery from a few slides ago finds gcd.

Two useful facts

gcd Fact 1

If a, b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Tomorrow's lecture we'll prove this fact. For now: just trust it.

gcd Fact 2

Let a be a positive integer: $\operatorname{gcd}(a, 0)=\mathbf{a}$
Does $a \mid a$ and $\underbrace{a \mid 0}$? Yes $a \cdot 1=a ; a \cdot 0=$ Q .
Does anything greater than a divide a ? bra bla by

public int Mystery(int m, int n) \{

\}
return m;
\}

Euclid's Algorithm

$$
\left\{\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,660 \% d 26)=\operatorname{gcd}((26,30) \\
& =\operatorname{gcd}(30,126 \% 0)=\operatorname{gcd}(30,6) \\
& =\operatorname{ged}(6,30 \% 6)=\operatorname{gcd}(6,0) \\
& =6 .
\end{aligned}\right.
$$

Tableau for m

Euclid's Algorithm

while(n ! = 0) \{

$$
\operatorname{gcd}(660,126)=\operatorname{gcd}(126,660 \bmod 126)=\operatorname{gcd}(126,30)
$$

$$
=\operatorname{gcd}(30,126 \bmod 30)=\operatorname{gcd}(30,6)
$$

$$
=\operatorname{gcd}(6,30 \bmod 6) \quad=\operatorname{gcd}(6,0)
$$

$$
=6
$$

Tableau form

$$
\begin{aligned}
& 660=5 \cdot 126+30 \\
& 126=4 \cdot 30+6 \\
& 30=5 \cdot 6+0
\end{aligned}
$$

Starting Numbers

Final
answer

Bézout's Theorem

Bézout's Theorem
 If a and b are positive integers, then there exist integers s
 $$
\begin{gathered} \text { and } t \text { such that } \\ \operatorname{gcd}(a, b)=s a+t b \end{gathered}
$$

We're not going to prove this theorem...
But we'll show you how to find s, t for any positive integers a, b.

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward
$\operatorname{gcd}(35,27)$

Extended Euclidian Algorithm

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
\operatorname{gcd}(35,27) & =\operatorname{gcd}(27,35 \% 27) \\
& =\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8) \\
& =\operatorname{gcd}(3,8 \% 3) \\
& =\operatorname{gcd}(3,3) \\
& =\operatorname{gcd}(2,3 \% 2) \\
& =\operatorname{gcd}(1,2 \% 1)
\end{aligned}
$$

$m q n$
$35=1 \cdot 27+8$
$27=3 \cdot 8+3$
$8=2 \cdot$
$3=1 \cdot$
$3+2+1$

Extended Euclidian Algorithm

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$m \quad q h$	r
$35=1 \cdot 27+8$	
$27=3 \cdot$	$8+3$
$8=2 \cdot$	$3+2$
$3=1 \cdot$	$2+1$

Extended Euclidian Algorithm

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$27=3 \cdot 8+3$
$8=2 \cdot 3+2$
$3=1 \cdot 2+1$

$r m$ of n
$8=35-1 \cdot 27$ $3=27-3 \cdot$ $2=8-2 \cdot$ $1=3-1 \cdot 2$

Extended Euclidian Algorithm

$$
\begin{aligned}
& \text { yorithm } \\
& =-1: 8+3(27-3 \cdot 8)
\end{aligned}
$$

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information $\mathrm{m}^{2} \cdot 27-9 \cdot 8$
Step 2 solve all equations for the remainder.

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

$$
\begin{aligned}
& 1=3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+2 \cdot 3
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{array}{ll}
\\
8=35-1 \cdot 27 \\
3=27-3 \cdot 8 \\
2=8-2 \cdot 3 \\
1=3-1 \cdot 2
\end{array} \quad \begin{array}{ll}
1 & =3-1 \cdot 2 \\
1 & \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3 \\
& =-1 \cdot 8+3(27-3 \cdot 8) \\
& =3 \cdot 27-10 \cdot 8 \\
& =3 \cdot 27-10(35-1 \cdot 27) \\
& =13 \cdot 27-10 \cdot 35
\end{array}
$$

$$
\operatorname{gcd}(27,35)=13 \cdot 27+(-10) \cdot 35
$$

When substituting back, you keep the larger of m, n and the number you just substituted. Don't simplify further! (or you lose the form you need)

So...what's it good for?
Suppose I want to solve $7 x \equiv 1(\bmod n)$

$$
\begin{aligned}
N F x & \equiv s(\bmod n) \\
x & =s(m \text { all } n) .
\end{aligned}
$$

Just multiply both sides by $\frac{1}{7} \ldots \quad x \equiv \frac{1}{7}(\bmod n)$
Oh wait. We want a number to multiply by 7 to get 1 .
If the $\operatorname{gcd}(7, n)=1$
Then $s \cdot 7+t n=1$, so $7 s-1=-t n$ i.e. $n \mid(7 s-1)$ so 7 s$) \equiv 1(\bmod n)$.
So the s from Bezout's Theorem is what we should multiply by!

$$
a+b=O(\bmod n)
$$

Try it

Solve the equatio $2 y \equiv 3(\bmod 26)$
What do we need to find?
The multiplicative inverse of $7(\bmod 26)$

$$
\operatorname{gcf}(26,7)
$$

Finding the inverse...

$$
\begin{aligned}
\operatorname{gcd}(26,7) & =\operatorname{gcd}(7,26 \% 7)=\operatorname{gcd}(7,5) \\
& =\operatorname{gcd}(5,7 \% 5)=\operatorname{gcd}(5,2) \\
& =\operatorname{gcd}(2,5 \% 2)=\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,2 \% 1)=\operatorname{gcd}(1,0)=1 .
\end{aligned}
$$

$$
\begin{gathered}
1=5-2 \cdot 2 \\
=5-2(7-5 \cdot 1) \\
=3 \cdot 5-2 \cdot 7 \\
=3 \cdot(26-3 \cdot 7)-2 \cdot 7 \\
3 \cdot 26-11 \cdot 7
\end{gathered}
$$

-11 is a multiplicative inverse.
We'll write it as 15 , since we're working mod 26.

$$
\begin{aligned}
& 26=3 \cdot 7+5 ; 5=26-3 \cdot 7 \\
& 7=5 \cdot 1+2 ; 2=7-5 \cdot 1 \\
& 5=2 \cdot 2+1 ; 1=5-2 \cdot 2
\end{aligned}
$$

Try it

Solve the equation $7 y \equiv 3(\bmod 26)$

What do we need to find?
The multiplicative inverse of $7(\bmod 26)$.
$15 \cdot 7 \cdot y \equiv 15 \cdot 3(\bmod 26)$
$y \equiv 45(\bmod 26)$
Or $y \equiv 19(\bmod 26)$
So $26 \mid 19-y$, i.e. $26 k=19-y$ (for $k \in \mathbb{Z}$) i.e. $y=19-26 \cdot k$ for any $k \in \mathbb{Z}$
So $\{\ldots,-7,19,45, \ldots 19+26 k, \ldots\}$

And now, for some proofs!

GCD fact

If a and b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

How do you show two gcds are equal?
Call $a=\operatorname{gcd}(w, x), b=\operatorname{gcd}(y, z)$

If $b \mid w$ and $b \mid x$ then b is a common divisor of w, x so $b \leq a$ If $a \mid y$ and $a \mid z$ then a is a common divisor of y, z, so $a \leq b$ If $a \leq b$ and $b \leq a$ then $a=b$

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that y is a common divisor of a and b.
By definition of $\operatorname{gcd}, y \mid b$ and $y \mid(a \% b)$. So it is enough to show that $y \mid a$. Applying the definition of divides we get $b=y k$ for an integer k, and $(a \% b)=y j$ for an integer j.
By definition of mod, $a \% b$ is $a=q b+(a \% b)$ for an integer q.
Plugging in both of our other equations:
$a=q y k+y j=y(q k+j)$. Since q, k, and j are integers, $y \mid a$. Thus y is a common divisor of a, b and thus $y \leq x$.

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that x is a common divisor of b and $\mathrm{a} \% b$.
By definition of gcd, $\mathrm{x} \mid b$ and $x \mid a$. So it is enough to show that $\mathrm{x} \mid(a \% b)$.
Applying the definition of divides we get $b=x k^{\prime}$ for an integer k^{\prime}, and $\mathrm{a}=x j^{\prime}$ for an integer j^{\prime}.
By definition of mod, $a \% b$ is $a=q b+(a \% b)$ for an integer q
Plugging in both of our other equations:
$x j^{\prime}=q x k^{\prime}+a \% b$. Solving for $a \% b$, we have $a \% b=x j^{\prime}-q x k^{\prime}=$ $x\left(j^{\prime}-q k^{\prime}\right)$. So $x \mid(a \% b)$. Thus x is a common divisor of $b, a \% b$ and thus $x \leq y$.

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that x is a common divisor of b and $\mathrm{a} \% b$.

We have shown $x \leq y$ and $y \leq x$.
Thus $x=y$, and $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.

