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Extra Set Practice

Show 𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)

Proof:

Firse, we’ll show: 𝐴 ∪ 𝐵 ∩ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)

Let 𝑥 be an arbitrary element of𝐴 ∪ 𝐵 ∩ 𝐶 .

Then by definition of ∪,∩ we have:

𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)

Applying the distributive law, we get

𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)

Applying the definition of union, we have:

𝑥 ∈ (𝐴 ∪ 𝐵) and 𝑥 ∈ (𝐴 ∪ 𝐶)

By definition of intersection we have 𝑥 ∈ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶).

So 𝐴 ∪ 𝐵 ∩ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶).

Now we show 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ 𝐶

Let 𝑥 be an arbitrary element of 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 .

By definition of intersection and union, 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)

Applying the distributive law, we have 𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)

Applying the definitions of union and intersection, we have 𝑥 ∈ 𝐴 ∪ (𝐵 ∩ 𝐶)

So 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ 𝐶 .

Combining the two directions, since both sets are subsets of each other, we have 𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)



Extra Set Practice

Suppose 𝐴 ⊆ 𝐵. Show that 𝒫 𝐴 ⊆ 𝒫(𝐵).

Let 𝐴, B be arbitrary sets such that 𝐴 ⊆ 𝐵.

Let 𝑋 be an arbitrary element of 𝒫 𝐴 .

By definition of powerset, 𝑋 ⊆ 𝐴.

Since 𝑋 ⊆ 𝐴, every element of 𝑋 is also in 𝐴. And since 𝐴 ⊆ 𝐵, we also 
have that every element of 𝑋 is also in 𝐵.

Thus 𝑋 ∈ 𝒫(𝐵) by definition of powerset. 

Since an arbitrary element of 𝒫 𝐴 is also in 𝒫(𝐵), we have 𝒫 𝐴 ⊆
𝒫(𝐵).



Extra Set Practice

Disprove: If 𝐴 ⊆ 𝐵 ∪ 𝐶 then 𝐴 ⊆ 𝐵 or 𝐴 ⊆ 𝐶

Consider 𝐴 = 1,2,3 , 𝐵 = 1,2 , 𝐶 = 3,4 .

𝐵 ∪ 𝐶 = {1,2,3,4} so we do have 𝐴 ⊆ 𝐵, but 𝐴 ⊈ 𝐵 and 𝐴 ⊈ 𝐶.

When you disprove a ∀, you’re just providing a counterexample (you’re 
showing ∃) – your proof won’t have “let 𝑥 be an arbitrary element of 𝐴.”



Facts about modular arithmetic

For all integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 where 𝑛 > 0:

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑 𝑚𝑜𝑑 𝑛 then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛).

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

𝑎%𝑛 = 𝑎 − 𝑛 %𝑛.

We didn’t prove the first, it’s a good exercise! You can use it as a fact as 
though we had proven it in class.



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

There is not an integer 𝑥 such that 𝑎𝑥 = 𝑏, or there is not an integer 𝑦
such that 𝑎𝑦 = 𝑐. 

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

There has to be a better way! 

If only there were some equivalent implication…

One where we could negate everything…

Take the contrapositive of the statement:

For all integers, 𝑎, 𝑏, 𝑐: Show if 𝑎|𝑏 and 𝑎|𝑐 then 𝑎|(𝑏𝑐).



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

Therefore 𝑎|𝑏𝑐



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

By definition of divides, 𝑎𝑥 = 𝑏 and 𝑎𝑦 = 𝑐 for integers 𝑥 and 𝑦.

Multiplying the two equations, we get 𝑎𝑥𝑎𝑦 = 𝑏𝑐

Since 𝑎, 𝑥, 𝑦 are all integers, 𝑥𝑎𝑦 is an integer. Applying the definition of 
divides, we have 𝑎|𝑏𝑐.

So for all integers 𝑎, 𝑏, 𝑐 if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.



Try it yourselves!

Show for any sets 𝐴, 𝐵, 𝐶: if 𝐴 ⊈ (𝐵 ∪ 𝐶) then 𝐴 ⊈ 𝐶.

1. What do the terms in the statement mean?

2. What does the statement as a whole say?

3. Where do you start?

4. What’s your target?

5. Finish the proof ☺
Fill out the poll everywhere for 

Activity Credit!

Go to pollev.com/cse311 and login 

with your UW identity

Or text cse311 to 22333



Try it yourselves!

Show for any sets 𝐴, 𝐵, 𝐶: if 𝐴 ⊈ (𝐵 ∪ 𝐶) then 𝐴 ⊈ 𝐶.

Proof:

We argue by contrapositive, 

Let 𝐴, 𝐵, 𝐶 be arbitrary sets, and suppose 𝐴 ⊆ 𝐶.

Let 𝑥 be an arbitrary element of 𝐴. By definition of subset, 𝑥 ∈ 𝐶. By 
definition of union, we also have 𝑥 ∈ 𝐵 ∪ 𝐶. Since 𝑥 was an arbitrary 
element of 𝐴, we have 𝐴 ⊆ 𝐵 ∪ 𝐶 .

Since 𝐴, 𝐵, 𝐶 were arbitrary, we have: if 𝐴 ⊈ (𝐵 ∪ 𝐶) then 𝐴 ⊈ 𝐶.



Divisors and Primes



Primes and FTA

An integer 𝑝 > 1 is prime iff its only positive divisors are 𝟏
and 𝒑. Otherwise it is “composite”

Prime

Every positive integer greater than 1 has a unique 

prime factorization.

Fundamental Theorem of Arithmetic



GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the 

largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the 

smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple



Try a few values…

gcd(100,125)

gcd(17,49)

gcd(17,34)

gcd(13,0)

lcm(7,11)

lcm(6,10)



public int Mystery(int m, int n){

if(m<n){

int temp = m;

m=n;

n=temp;

}

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}

return m;

} 



How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 ⋅ 3, 22 ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.

(lcm has a similar algorithm – take the maximum number of copies of 
everything)

But that’s….really expensive. Mystery from a few slides ago finds gcd.



Two useful facts

Tomorrow’s lecture we’ll prove this fact.  For now: just trust it. 

If 𝒂, 𝒃 are positive integers, then gcd(𝒂, 𝒃) = gcd(𝒃, 𝒂%𝒃)

gcd Fact 1

Let 𝒂 be a positive integer: gcd(𝒂, 𝟎) = 𝐚

gcd Fact 2

Does 𝑎|𝑎 and 𝑎|0? Yes 𝑎 ⋅ 1 = 𝑎; 𝑎 ⋅ 0 = 𝑎.

Does anything greater than 𝑎 divide 𝑎?



public int Mystery(int m, int n){

if(m<n){

int temp = m;

m=n;

n=temp;

}

while(n != 0) {

int rem = m % n;

m=n;

n=temp;

}

return m;

} 



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {

int rem = m % n;

m=n;

n=temp;

}



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {

int rem = m % n;

m=n;

n=temp;

}

= gcd(126, 660 mod 126)   = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Tableau form

660 = 5 ⋅ 126 + 30
126 = 4 ⋅ 30 + 6
30 = 5 ⋅ 6 + 0

Starting Numbers

Final 

answer



Bézout’s Theorem

We’re not going to prove this theorem…

But we’ll show you how to find 𝑠,𝑡 for any positive integers 𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that 

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

= gcd(8, 27%8)     = gcd(8, 3)

= gcd(3, 8%3)       = gcd(3, 2)

= gcd(2, 3%2)       = gcd(2,1)

= gcd(1, 2%1)        = gcd(1,0)

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward 

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 2 ⋅ 3



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 3 ⋅ 3
= −1 ⋅ 8 + 3 27 − 3 ⋅ 8
= 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)
= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting 

back, you keep 

the larger of 𝑚, 𝑛
and the number 

you just 

substituted. 

Don’t simplify 

further! (or you 

lose the form you 

need)



So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by 
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1

Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .

So the 𝑠 from Bézout’s Theorem is what we should multiply by!



Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 

The multiplicative inverse of 7(mod 26)



Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5)    = gcd(5,2)

= gcd(2, 5%2)    = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ;  2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ;  1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)
= 3 ⋅ 5 − 2 ⋅ 7

= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7
3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse.

We’ll write it as 15, since we’re working mod 26.



Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 

The multiplicative inverse of 7 (𝑚𝑜𝑑 26).

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)

𝑦 ≡ 45(𝑚𝑜𝑑 26)

Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)

So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ

So {… ,−7,19,45,…19 + 26𝑘,… }



And now, for some proofs!



GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?

Call 𝑎 = gcd 𝑤, 𝑥 , 𝑏 = gcd(𝑦, 𝑧)

If 𝑏|𝑤 and 𝑏|𝑥 then 𝑏 is a common divisor of 𝑤, 𝑥 so 𝑏 ≤ 𝑎

If 𝑎|𝑦 and 𝑎|𝑧 then 𝑎 is a common divisor of 𝑦, 𝑧, so 𝑎 ≤ 𝑏

If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and 
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a 
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and 
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus 
𝑥 ≤ 𝑦.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. 

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .


