T HAVE NOTHING TO DO, SO0 ITM TRYING

STARTED AT 1:00, BUT
WITH EACH HOUR THE

—— WHATY
— NUMBER GETS BIGGER
‘M FACTORING Y& |
ITI-[E TIME. 1 WONDER HOW
2 LONG T CAN KEEP UP

TO CALCULATE THE PRIME FACTORS OFTHE
TIME EP.CIF{ MINUTE BEFORE 1T CHANGES.
- TTWASEASY WHEN I N

5 T
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Extra Set Practice

ShowAUu(BNnC)=(AUB)N (AU ()

Proof:

Firse, we'll show: AU(BNC) S (AUB)N(AUC(C)
Let x be an arbitrary element ofA U (B N C).
Then by definition of U,n we have:
XEAV(x€EBAx€EC(D)

Applying the distributive law, we get
(xeAVxEB)A(x€EAVXxECD)

Applying the definition of union, we have:
x€(AUB)andx € (AU )
By definition of intersection we have x € (AU B) N (AU C).
SOAU(BNC)S(AUB)N(AUC).

Now we show (AUB)N(AUC) S AU(BNC(C)

Let x be an arbitrary element of (AU B) N (AU C).

By definition of intersection and union, (x EAVx € B)A(x EAVx €C)

Applying the distributive law, we have x e AV (x € BAx € ()

Applying the definitions of union and intersection, we have x € AU (B N C)

So(AUB)N(AuC)<c AUu(BnC().

Combining the two directions, since both sets are subsets of each other, we have AU(BNC) =(AUB)N (AU ()



Extra Set Practice

Suppose A € B. Show that P(A) € P(B).
Let A, B be arbitrary sets such that A € B.
Let X be an arbitrary element of P(A4).

By definition of powerset, X € A.

Since X € A, every element of X is also in A. And since A € B, we also
have that every element of X is also in B.

Thus X € P(B) by definition of powerset.

Since an arbitrary element of P(A4) is also in P(B), we have P(A) <
P(B).



Extra Set Practice

Disprove: Ifig\(B UC)thenACS BorAcC
——— e
— —
Consider A = {1,2,3}, B = {1,2},C = {3,4}.
~ — — —— —
%@4} so we do havefl C(BUC) butA <& B:and AZC.

895}#54
When you disprove a_V, you're just providing a counterexample (you're
showing_3) — your proof won't have “let x be an arbitrary element of A."




Facts about modular arithmetic

For all integers a, b, c,d,n where n > 0:

It a = b(mod n) and ¢ = d(mod n) then a + ¢ = b + d(mod n).
—_— . ~— S —

It a = b(mod n) and ¢ = d(mod n) then ac = bd (mod n).

ga = b(mod n) if and only if b = a (mod n).

a%n = (a — n)%n.

We didn’t prove the first, it's a good exercise! You can use it as a fact as
though we had proven it in class.



Another Proof

-or all integers, a, b, c: Show that if a + (bc) then wor&
Proof:
et a, b, c be arbitrary integers, and suppose a t (bc). S 4

Then there is not an integer z such that az = bc )
L] YR e (e

There is not an integer x such that ax = b, or there is not an integer y
such that ay = c.

SoaJ(boraJrcS



Another Proof

-or all integers, a, b, gins

Proof:

et a, b, c be arbitrar
Then there is not an

\ A

Hiere has fo be a befter way!



Another Proof

For all integers, a, b, c: Show that it a + (bc) theWa bc. |
&

There has to be a better way!

If only there were some equivalent implication...

One where we could negate everything... "P —
\———""/

\/

For all integers, a, b, c: Show if a|b and a|c then a|(bc).
(I W—

Take the contrapositive of the statement:




By contrapositive

Claim: For all integers, a, b, c: Show that if a 4 (bc) thena +t b ora t c.
We argue by contrapositive. &——

Let a, b, c be arbitrary integers, and suppose a|b and a|c.
~— g

Therefore a|bc &



By contrapositive

Claim: For all integers, a, b, ¢: Show thatif a + (bc) thenat b oratc.
~—__ __

We argue by contrapositive. M C?\,%) = p A
Let a, b, c be arbitrary integers, and suppose@and alc. =

By definition of divides, ax = b and ay = c for integers x and y.
N ~—

Multiplying the two equations, we get axay = bc

Since a, x,y are all integers, xay is an integer. Applying the definition of
divides, we have albc.

So for all integers a,b,c ifa t (bc) thenatboratc.



Try it yourselves!

Show for any sets A,B,C:if A€ (BUC) thenA £ C.

1. What do the terms in the statement mean?
2. What does the statement as a whole say?
3. Where do you start?

4. What's your target?

Fill out the poll everywhere for

5. Finish the proof © Activity Credit!

Go to pollev.com/cse311 and login
with your UW identity
Or text cse311 to 22333




Try it yourselves!

¥ ALB,C

Proof. 3 x (xefl N ”><7/ du )

We argue by contrap\gitl\_/géAV e BUC)
et S

Let A, B, C be arbitrary—sets, and suppose 4 € C. -

Let x be an arbitrary element of A. By definition of subset, x € C. B
definition of union, we also have x € B U C. Since x was an arbitrar
element of 4, we have A € (B U C).

Since A, B, C were arbitrary, we have: it A € (BU C) then A £ C.




‘ Divisors and Primes



Primes and FTA

Prime

An integer p > 1 is prime iff its only positive divisors are 1
and p. Otherwise it is “composite”

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique
prime factorization.




GCD and LCM

Greatest Common Divisor

The Greatest Common Divisor of a and b (gcd(a,b)) is the
largest integer ¢ such that c|a and c|b

Least Common Multiple

The Least Common Multiple of a and b (Icm(a,b)) is the
smallest positive integer c such that a|c and b|c.




Try a few values...

gcd(100,125)==5
gcd(17,49) = |
gcd(17,34) = \=7 7
gcd(13,0) =13 \5, (™

3 (=13
lcm(7,11) = 27 L[5

cm(6,10)= 30 & 0213
%é



1f (m<n) {
int temp = m;
m=n;
n=temp;

}

while(n !'= 0) {
int rem = m %
m=n;
n=rem;

}

return m;

public int Mystery(int m, 1nt



How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 - 3,2% - 5) = 2*{min(2,3)} = 2”2 = 4.

—— ey ot W:l £ —
(lcm has a similar algorithm — take the maximum number of copies of
everything)

But that's....really expensive. Mystery from a few slides ago finds gcd.




Two useful facts

If a, b are positive integers, then gcd(a, b) = gcd(b, ab)
e \/\_\_/\/

Tomorrow’s lecture we'll prove this fact. For now: just trust it.

gcd Fact 2

Let a be a positive integer: gcd(a, 0) =\a

O

Does ala and a|0? Yesa -1 =a; a-0 =0

Does anything greater than a divide a?



public int Mystery(int m, 1nt n) {
1f (m<n) {

int temp = m; " = V\

amtemp; gelCmn)
} — ﬁC(X(‘q/ VV)%V\)

while(n !'= 0) {
int rem = m % n;
m=n; - '
o :\7&71/ 0)
A
S

return m;
—_——



Euclid’s Algorithm

while (n

gcd(660,126)~ %CA( 2c, 0% 14 }“M‘%/%OS
= g (30 [1_(70 20 (?YQCBG é>
~ g (£, v g4 (& °)
= &£
W‘“’”’é‘vn V™
660= 5126+ 3Q
26 = . 30V + &
0:=2& *O

0)

int rem = m %

m=n;
n=rem;



Euclid’s Algorithm

ng(660,126) = gcCo
= gCC

(126, 660 mod 126)
(30, 126 mod 30)

= gCC
=6

Tableau form
v

(6, 30 mod 6)

66Q =5 - 1\2'6 + 30 Starting Numbers

126 = 4- 30 +(6)

30 =5- (6)+ 0

while (n

}

= gcd(126, 30)

= gCC

(30, 0)

= gCC

(6, 0)

'= 0)

int rem = m % n;
m=n;
n=rem;



Bezout's Theorem

Bézout’s Theorem
If a and b are positive integers, then there exist integers s

and t such that
gcd(a,b)=sa + tb

We're not going to prove this theorem...

But we'll show you how to find s,t for any positive integers a, b.



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27)



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

M g 200
gcd(BSﬁﬂ) = gcd(27, 35%27) = gcd(27,8) 35=1-27 +8
= gcd(8, 27/%8) = gcd(8, 3) 27=3- 8 +3
= gcd(3, 8%3) = gcd(3, 2) 8 =2- 3 +2
= gcd(2, 3%2) = gcd(2,1) i = _1_ 2, +1
= gcd(1, 29%1) = gcd(1,0) -



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

AL o W o co™m D
35=1-27 +8 L =DS — |- 2
27=3- 8 +3 L= —3-%

8 =2- 3 +2

3 =1- 2 +1
S—a




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

" C{_V)
35=1-27 +8 =35 — 1. 27
=27 — 3

8 =2- 3 +2

-
8
27=3- 8 +3 3
2
3 =1- 2 +1 1

- 8
8 — 2- 3
3 1. 2




Extended Euclidian Algorithm
76&(@1/»)

Step 1 compute gcd(a,b); keep tableau information. -5 MJ‘_ﬁ )

Step 2 solve all equations for the remainder.
Step 3 substitute backward

= 2 — | e<%f1.\3>)
:v3+—k~2“+3o3
=35 -1




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

1=3-1-2
8=35—1-27 =3-1-8-2:3)
3=27 —3- 8 Sohetes




Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

3=27—-3- 8
2 =8 — 2- 3
1 =3 -1 2

gcd(27,35) = 13- 27 + (—10) - 35

1=3-1-2
=3-1-(8-2-3)
~1-8+3-3
~1-8+3(27—3-8)
=3.27-10-8
=3.27-10(35—1-27)
=13-.27—-10-35

When substituting
back, you keep
the larger of m, n
and the number
you just
substituted.

Don’t simplify
further! (or you
lose the form you
need)



So..what's it good for?

Suppose | want to solve 7x = 1(mod n)

Just multiply both sides by %
Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) =1
Thens-74+tn=1,507s —1=—tnie. n|(7s —1) so 7s = 1(mod n).
So the s from Bézout's Theorem is what we should multiply by!



Try 1t

Solve the equation 7y = 3(mod 26)

What do we need to find?
The multiplicative inverse of 7(mod 26)



Finding the inverse...

= gcd(5, 7%5) = gcd(5,2)
= gcd(2, 5%2) = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26=3-745;5=26 —3-7
7=5-142;2=7 - 5-1
5=2.-241;1=5— 2-2

1=5—2-2
=5-2(7=5-1)
=3.5-2-7
=3-(26—-3-7)—2-7
3.26—11-7

—11 is a multiplicative inverse.
We’'ll write it as 15, since we're working mod 26.



Try 1t
Solve the equation 7y = 3(mod 26)

What do we need to find?
The multiplicative inverse of 7 (mod 26).

15-7-y=15-3(mod 26)

y = 45(mod 26)

Or y = 19(mod 26)

S026|19—vy,ie. 26k=19—y (forke€Z)ie.y=19—-26-kforanyk € Z
So {...,—7,19,45, ...19 + 26k, ...}



I~ And now, for some proofs!



GCD fact

It a and b are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?
Call a = ged(w, x), b = gcd(y, z)

f blw and b|x then b is a common divisor of w,x so b < a
faly and a|z then a is a common divisor of y,z,soa < b
fa<bandb <athena=5»




gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that y is a common divisor of a and b.
By definition of gcd, y|b and y|(a%b). So it is enough to show that y]a.

Applying the definition of divides we get b = yk for an integer k, and
(a%b) = yj for an integer j.

By definition of mod, a%b is a = gb + (a%b) for an integer q.
Plugging in both of our other equations:

a = qyk + yj = y(qgk + j).Since q,k, and j are integers, y|a. Thus y is a
common divisor of a, b and thus y < x.




gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.
By definition of gcd, x|b and x|a. So it is enough to show that x|(a%b).

Applying the definition of divides we get b = xk' for an integer k', and
a = xj' for an integer j'.

By definition of mod, a%b is a = gb + (a%b) for an integer q
Plugging in both of our other equations:

xj' = qxk’ + a%b. Solving for a%b, we have a%b = xj' — qxk’ =
x(j" — qk"). So x|(a%b). Thus x is a common divisor of b, a%b and thus
X=<Yy.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.

We have shown x < yand y < x.
Thus x =y, and gcd(a, b) = gcd(b, a%b) .



